Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Top management | Tim Luce, Head of Science & Operation

    What does a seven-year-old growing up in a small community in Arkansas know about what it means to be an 'atomic scientist'? Probably not much. Except, remember [...]

    Read more

  • Blanket shield blocks | Series production milestone in Korea

    It takes many months for a single forged block of stainless steel to be transformed into the complex shape of an ITER blanket shield block, full of gullies, cha [...]

    Read more

  • Image of the week | 5 top lid segments expected

    A little less than five years ago, in December 2015, the first segments of the ITER cryostat (out of a total of 54) were delivered to the construction site from [...]

    Read more

  • On site | As ITER begins assembly, HVAC becomes mission critical

    Not only will heating, ventilation and air conditioning (HVAC) help protect people and equipment during the assembly phase at ITER, but they will also help ensu [...]

    Read more

  • Vacuum vessel | Sector #6 is leak tight

    The first ITER vacuum vessel sector has passed a helium leak test on site with flying colours. Back in March 2020, as experts from the Korean Domestic Agency [...]

    Read more

Of Interest

See archived entries

Inventions

Where have all the neutrons gone?

Kirsten Haupt

It is not unusual in the course of a work day at the world's largest scientific experiment to rely on creativity to resolve the challenge at hand. But less common, is when an inventor's technique is rewarded for not only adding value to ITER, but also attracting the interest of outside firms. A case in point.

Michael Loughlin (left) was recognized by the ITER Director-General Bernard Bigot in early January for an innovation that not only adds value to ITER, but also attracts the interest of outside firms. (Click to view larger version...)
Michael Loughlin (left) was recognized by the ITER Director-General Bernard Bigot in early January for an innovation that not only adds value to ITER, but also attracts the interest of outside firms.
An expert in nuclear analysis and shielding at ITER, Michael Loughlin's job is to understand and model the behaviour of neutrons in order to shield both equipment and people from their impact.

In the course of his work he had the idea for a web-based application for radiation mapping that was then developed under contract by AMEC (now part of the Wood Group). ITER licensed this software to AMEC for commercial exploitation in 2013—the first time that ITER issued a license for intellectual property developed to address an ITER-specific issue.

On 8 January, Loughlin received recognition for his creativity and inventiveness from the ITER Director-General. "It is important to demonstrate that we deliver real innovation," said Bernard Bigot as he presented Loughlin with the award. "I hope to encourage others to follow this example."

So, what is this innovation about? Nuclear fusion creates radiation in the immediate environment of the fusion reactor through escaping neutrons and gamma rays. Materials and equipment need to be able to withstand that radiation and people need to be protected against its harmful effects.

In the conception of their systems, engineers need to know about the radiation conditions at any location within the Tokamak Building and two adjacent buildings, the Tritium and Diagnostics buildings. Extensive calculations have been carried out, Loughlin explains. "We predicted and modelled what the radiation is likely going to be." The modelling considered data on the geometry and structure of the buildings—including information on materials, thickness of walls and floors, openings, and pipes systems—and on how radiation would travel in these locations.

The software tool helps to visualize radiation conditions in any given location in the Tokamak Complex by producing 3D maps. (Click to view larger version...)
The software tool helps to visualize radiation conditions in any given location in the Tokamak Complex by producing 3D maps.
The result is an enormous database. Loughlin's initial idea led to the creation of a software tool that provides access to the database, helps query it, and then produces 3D radiation maps for any location within the buildings during the different operating phases of ITER. The user-friendly application is web-based and can be run on mobile devices.

Who might be interested in the software? There are a number of industries that could find this software application useful, such as the nuclear fission industry or medial facilities using radiation technology. "It's for anybody who wants to have a good overview over radiation conditions in a facility," says Loughlin.


return to the latest published articles