Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Cryoplant | Filled from floor to ceiling

    The ITER cryoplant used to be a vast echoey chamber with 5,400 m² of interior space divided into two areas; now, it is filled from floor to ceiling with industr [...]

    Read more

  • Cryostat | Adjusting, welding, testing ...

    The assembly of the ITER cryostat—the stainless steel "thermos" that insulates the ultra-cold superconducting magnets from the environment—is progress [...]

    Read more

  • Tokamak Building | Full steam ahead

    In this central arena of the construction site, construction teams are active three shifts a day—two full work shifts and a third, at night, dedicated to moving [...]

    Read more

  • Poloidal field coils | Turning tables and hot resin

    One of only two manufacturing facilities located on the ITER site, the Poloidal Field Coils Winding Facility was constructed by Europe to house the winding, imp [...]

    Read more

  • Assembly Hall | One giant standing

    Two identical handling tools in the Assembly Hall will play a critical role in preparing ITER's nine vacuum vessel sectors for their final journey: transport by [...]

    Read more

Of Interest

See archived entries

Broader Approach

LIPAc accelerator to charge up

Ten thousand kilometres away, in Rokkasho, Japan, the countdown has begun for the start of beam operation for the Linear IFMIF Prototype Accelerator, LIPAc. Part of a series of forward-looking fusion energy development projects carried out through the Broader Approach Agreement between Europe and Japan, LIPAc is entering its intermediate commissioning phase.

A view of the radio frequency area of LIPAc, the prototype accelerator of the Broader Approach collaboration. Successful beam operation over the next three years will open the way to building a fusion-relevant neutron source for materials testing. (Click to view larger version...)
A view of the radio frequency area of LIPAc, the prototype accelerator of the Broader Approach collaboration. Successful beam operation over the next three years will open the way to building a fusion-relevant neutron source for materials testing.
At IFMIF, the International Fusion Materials Irradiation Facility, the focus is on preparing for the construction of a fusion-relevant materials test facility through the engineering validation of the principal technological elements.

The assembly and commissioning of the 1:1 prototype accelerator, LIPAc, is progressing well. After producing its first proton (hydrogen) beam in 2014 at the Broader Approach site in Rokkasho, Japan, LIPAc is ready to enter a new phase. Proton and deuteron beams of will be accelerated to 5 MeV in 2018, with beam operation beginning in February.

In the future material test facility, whose location has not yet been decided, materials will be subjected to high-power impact of fusion neutrons to test their resistance.

One accelerator of deuterons (deuterium ions) at 40 MeV with a current of 125 mA in continuous wave mode will impact a flowing liquid lithium target. The interaction of the accelerated deuterons with the liquid lithium in the loop will generate neutrons similar to those produced in deuterium-tritium fusion reactions. These neutrons will in turn irradiate reduced-scale samples of material to be tested, and other experiments in specific modules.

IFMIF engineering validation and engineering design activities are co-coordinated by the European Implementing Agency of the Broader Approach Agreement (F4E) and its Japanese Implementing Agency (QST).

See the full story on the European Domestic Agency website.



return to the latest published articles