Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • FEC2020 | Seeking sponsors for 28th IAEA Fusion Energy Conference

    For only the third time since 1961, the International Atomic Energy Agency's Fusion Energy Conference will be taking place in France—hosted jointly by the Frenc [...]

    Read more

  • Nuclear safety | Under constant scrutiny

    Because one of the elements involved in the fusion reaction is the radioactive isotope tritium, and because the hydrogen fusion reaction itself generates a high [...]

    Read more

  • Power conversion | Alien structures and strange contraptions

    There are places in ITER that seem to belong to another world, places full of alien structures and strange contraptions. The feeling—a mixture of awe and puzzle [...]

    Read more

  • Tokamak Complex | A changing landscape

    For the past three years, the view from the top of the highest worksite crane has not changed much. Inside of the Tokamak Complex, 80 metres below, concrete gal [...]

    Read more

  • Ion cyclotron heating | How to pump 20 MW of power into 1 gram of plasma

    To power the ion cyclotron system, the ITER Organization and its partners are designing not only new antennas, which will be housed in the tokamak vessel, but a [...]

    Read more

Of Interest

See archived entries

Broader Approach

LIPAc accelerator to charge up

Ten thousand kilometres away, in Rokkasho, Japan, the countdown has begun for the start of beam operation for the Linear IFMIF Prototype Accelerator, LIPAc. Part of a series of forward-looking fusion energy development projects carried out through the Broader Approach Agreement between Europe and Japan, LIPAc is entering its intermediate commissioning phase.

A view of the radio frequency area of LIPAc, the prototype accelerator of the Broader Approach collaboration. Successful beam operation over the next three years will open the way to building a fusion-relevant neutron source for materials testing. (Click to view larger version...)
A view of the radio frequency area of LIPAc, the prototype accelerator of the Broader Approach collaboration. Successful beam operation over the next three years will open the way to building a fusion-relevant neutron source for materials testing.
At IFMIF, the International Fusion Materials Irradiation Facility, the focus is on preparing for the construction of a fusion-relevant materials test facility through the engineering validation of the principal technological elements.

The assembly and commissioning of the 1:1 prototype accelerator, LIPAc, is progressing well. After producing its first proton (hydrogen) beam in 2014 at the Broader Approach site in Rokkasho, Japan, LIPAc is ready to enter a new phase. Proton and deuteron beams of will be accelerated to 5 MeV in 2018, with beam operation beginning in February.

In the future material test facility, whose location has not yet been decided, materials will be subjected to high-power impact of fusion neutrons to test their resistance.

One accelerator of deuterons (deuterium ions) at 40 MeV with a current of 125 mA in continuous wave mode will impact a flowing liquid lithium target. The interaction of the accelerated deuterons with the liquid lithium in the loop will generate neutrons similar to those produced in deuterium-tritium fusion reactions. These neutrons will in turn irradiate reduced-scale samples of material to be tested, and other experiments in specific modules.

IFMIF engineering validation and engineering design activities are co-coordinated by the European Implementing Agency of the Broader Approach Agreement (F4E) and its Japanese Implementing Agency (QST).

See the full story on the European Domestic Agency website.



return to the latest published articles