Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Cryolines | Not just any pipes

    In order to produce and sustain plasmas ten times hotter than the core of the Sun, some essential elements of the ITER machine need to be cooled to temperatures [...]

    Read more

  • Symposium in Japan | Fusion attracts strong political support

    A recent symposium in Japan on fusion energy attracted 500 participants. The Fusion Energy Forum of Japan was established in 2002 for the purpose of promoting [...]

    Read more

  • Fiction | "Steampunk" fusion machine travels in time

    Ever since a 'Mr Fusion' device appeared on Doc's time-travelling DeLorean in the first opus of the Back to the Future trilogy (1985), fusion energy has exerted [...]

    Read more

  • Construction | Honouring the crown mockup

    Medieval stone masons used to engrave their personal mark on the walls and pillars of the cathedrals they contributed to building. Their present-day counterpart [...]

    Read more

  • Neutral beam diagnostics | Right in the line of the beam

    A high-precision diagnostic is about to enter into service at the ITER Neutral Beam Test Facility, where scientists are testing key aspects of ITER's external h [...]

    Read more

Of Interest

See archived entries

Assembly Hall

First tool tested in June

Good progress on the installation of the first of two specialized tools for vacuum vessel pre-assembly means that by late June, the 22-metre-tall giant will be ready for functional testing.
 
Although similar in colour to the building structure, the first sector sub-assembly tool is a striking new presence in the Assembly Hall—22 metres tall and built from 800 tonnes of metal. In the foreground are the two outboard columns that will be installed this month. (Click to view larger version...)
Although similar in colour to the building structure, the first sector sub-assembly tool is a striking new presence in the Assembly Hall—22 metres tall and built from 800 tonnes of metal. In the foreground are the two outboard columns that will be installed this month.
Side-by-side in the Assembly Hall, the largest bespoke tools in the project's assembly toolkit will be active for approximately three years—from 2019 to 2021—smoothly opening and closing their lateral wings (millimetre by millimetre) to associate thermal shielding and a pair of toroidal field coils to each of the nine vacuum vessel sectors before their transfer to the Tokamak Pit for welding.

The three-footed tools will support the 440-tonne sectors vertically, as the components are positioned and aligned to millimetre-level assembly tolerances. Each unit—built from 800 tonnes of metal plus auxiliary components—is designed to support nearly 1,200 tonnes of dead weight.

A sophisticated system of actuators on the lower platforms will allow operators to control alignment to within one millimetre. A dummy load of 340 tonnes will be tested on the equipment early next year. (Click to view larger version...)
A sophisticated system of actuators on the lower platforms will allow operators to control alignment to within one millimetre. A dummy load of 340 tonnes will be tested on the equipment early next year.
The first tool, delivered to ITER in batches last year by the Korean Domestic Agency, is now nearly completely assembled, with all key components for the rails, rotating frames, rotating arms and inboard column in place. By the end of April the remaining equipment—lower alignment units and two outboard columns—will have been installed.

Functional tests are planned in June. The same month, the second sector sub-assembly tool—which completed factory acceptance tests at Taekyung Heavy Industries in Korea in March—will be delivered to ITER for assembly.

By next February, both tools will be ready for the final test before entering operation—verification with a full-weight dummy load of 340 tonnes, or the weight of one toroidal field coil plus a 10 percent safety margin. This final qualification activity will allow operators to verify the tools' ability to accurately adjust the dummy load toroidally and to six degrees of freedom* within tolerances of +/- 1 millimetre.

*Six degrees of freedom refers to adjustability along X, Y and Z axes (up and down, side to side, forward and backward) as well as in rotational directions relative to the axes (swivel, tilt, pivot).


return to the latest published articles