Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Thermal shield | First 23 panels fit like clockwork

    During fitting trials in Korea, 23 stainless steel panels have been successfully pre-assembled into the first sector of vacuum vessel thermal shield. In a major [...]

    Read more

  • Promising research | Taming "ill-behaving" fusion plasmas

    Certain types of magnetic distortions have proved beneficial in suppressing ELM-type instabilities at the edge of fusion plasmas—periodic bursts of energy that [...]

    Read more

  • Divertor rails | A chicken and egg situation

    In the ideal world of 3D drawings, a component's dimensions are by definition nominal and parts fit together like cogs and gears in a pricey wristwatch. The rea [...]

    Read more

  • Transformers | The switch can now be flipped

    For close to four weeks they tested all the signals, confronting the figures that appeared on their screens to in-field observations and measurements. Transmitt [...]

    Read more

  • ITER at IAEA Conference | The spirit of "Atoms for peace"

    The General Conference of the International Atomic Energy Agency is among the largest and most diverse annual gatherings—more than 2500 participants from 153 co [...]

    Read more

Of Interest

See archived entries

Video

How does the ITER cryoplant work?

Cold is essential to ITER—10,000 tonnes of superconducting magnets, the thermal shield that surrounds the machine, the cryopumps that achieve the high vacuum inside the vacuum vessel ... all need to be brought down to extremely low temperatures (between minus 193 °C and minus 269 °C).

The ITER cryogenic system will be the largest concentrated cryogenic system in the world. (Click to view larger version...)
The ITER cryogenic system will be the largest concentrated cryogenic system in the world.
In order to deliver the cooling fluids to the machine, a large cooling plant has been built at ITER that ranks as the most powerful single-platform cryoplant in the world.

Designed and manufactured by Air Liquide, the ITER cryoplant includes three helium refrigeration units, two nitrogen refrigeration units and 1.6 kilometres of cryogenic lines connecting the plant to the Tokamak Building. Installation activities are underway now.

The complex workings of the ITER cryoplant are explained in this video, produced by Air Liquide.

For more on Air Liquide's contribution to ITER cryogenics, visit this page.



return to the latest published articles