Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • IAEA and ITER | Even closer cooperation

    Under Practical Arrangements signed in June, the International Atomic Energy Agency and the ITER Organization will be expanding and deepening a long history of [...]

    Read more

  • Neutral Beam Test Facility | High voltage component for MITICA

    Creating reliable high-energy neutral beams at ITER parameters, from a negative ion source, requires such a large technological leap that the components of the [...]

    Read more

  • 24th ITER Council | En route to First Plasma, 63% of the work is done

    The ITER Council has met for the twenty-fourth time since the signature of the ITER Agreement. Representatives from China, the European Union, India, Japan, Kor [...]

    Read more

  • Upper ports | A very international effort

    The 18 upper ports of the ITER vacuum vessel are procured by Russia, manufactured in Germany, and mounted (in part) on the vessel sectors by contractors in Ital [...]

    Read more

  • Paint job | One level done, five to go

    The job is done and the effect is spectacular. At the deepest basement level (B2) of the Tokamak Building, the floors, walls, and ceilings are now perfectly whi [...]

    Read more

Of Interest

See archived entries

Video

How does the ITER cryoplant work?

Cold is essential to ITER—10,000 tonnes of superconducting magnets, the thermal shield that surrounds the machine, the cryopumps that achieve the high vacuum inside the vacuum vessel ... all need to be brought down to extremely low temperatures (between minus 193 °C and minus 269 °C).

The ITER cryogenic system will be the largest concentrated cryogenic system in the world. (Click to view larger version...)
The ITER cryogenic system will be the largest concentrated cryogenic system in the world.
In order to deliver the cooling fluids to the machine, a large cooling plant has been built at ITER that ranks as the most powerful single-platform cryoplant in the world.

Designed and manufactured by Air Liquide, the ITER cryoplant includes three helium refrigeration units, two nitrogen refrigeration units and 1.6 kilometres of cryogenic lines connecting the plant to the Tokamak Building. Installation activities are underway now.

The complex workings of the ITER cryoplant are explained in this video, produced by Air Liquide.

For more on Air Liquide's contribution to ITER cryogenics, visit this page.



return to the latest published articles