Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Cryostat thermal shield | A "strong back" for a fragile component

    The lower cylinder thermal shield is a large silver-plated component, circular in shape and five metres tall, which fits inside the depression in the cryostat b [...]

    Read more

  • Diagnostic shielding | B4C ceramic bricks prove their worth

    A number of materials can effectively shield diagnostic equipment from the neutron flux coming from the plasma. To find the best one, the diagnostics team at IT [...]

    Read more

  • Image of the week | The cryostat top lid, batch after batch

    Batch after batch, the elements for the top lid of the ITER cryostat keep arriving from India. As of today, 7 out of the 12 required segments have been delivere [...]

    Read more

  • Cooling water system | The tanks within a tank

    Deep inside the bowels of the Tokamak Building, the entrance to one of most spectacular rooms of the whole installation resembles that of a broom cupboard. [...]

    Read more

  • ITER assembly | Last major assembly contract signed

    One year after finalizing two major machine assembly contracts, the ITER Organization has chosen the contractors who will carry out assembly and installation ac [...]

    Read more

Of Interest

See archived entries

Video

How does the ITER cryoplant work?

Cold is essential to ITER—10,000 tonnes of superconducting magnets, the thermal shield that surrounds the machine, the cryopumps that achieve the high vacuum inside the vacuum vessel ... all need to be brought down to extremely low temperatures (between minus 193 °C and minus 269 °C).

The ITER cryogenic system will be the largest concentrated cryogenic system in the world. (Click to view larger version...)
The ITER cryogenic system will be the largest concentrated cryogenic system in the world.
In order to deliver the cooling fluids to the machine, a large cooling plant has been built at ITER that ranks as the most powerful single-platform cryoplant in the world.

Designed and manufactured by Air Liquide, the ITER cryoplant includes three helium refrigeration units, two nitrogen refrigeration units and 1.6 kilometres of cryogenic lines connecting the plant to the Tokamak Building. Installation activities are underway now.

The complex workings of the ITER cryoplant are explained in this video, produced by Air Liquide.

For more on Air Liquide's contribution to ITER cryogenics, visit this page.



return to the latest published articles