Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Fusion world | A helium campaign kicks off at JET

    After achieving record-breaking results on the Joint European Torus during 2021 experiments with the high-performance fuel mix of deuterium and tritium, EUROfus [...]

    Read more

  • Coil winding table | Seven years of faithful service

    In November 2015, workers from the European contractor Sea Alp Engineering, an Italian company based in Turin, began installing a large circular structure at th [...]

    Read more

  • Image of the week | Down under

    It has been close to five months since the first vacuum vessel module was installed in the Tokamak pit. The view from above is by now familiar: a huge D-sha [...]

    Read more

  • On site | An annual reminder about safety

    ITER's Safety and Quality Department knows: you can never repeat an important message often enough. The second annual ITER Safety Day took place on 15 Septe [...]

    Read more

  • Top management | ITER Council appoints new Director-General

    Convening in an extraordinary session in Paris, the ITER Council has appointed Pietro Barabaschi as the next Director-General of the ITER Organization. Mr Barab [...]

    Read more

Of Interest

See archived entries

Video

How does the ITER cryoplant work?

Cold is essential to ITER—10,000 tonnes of superconducting magnets, the thermal shield that surrounds the machine, the cryopumps that achieve the high vacuum inside the vacuum vessel ... all need to be brought down to extremely low temperatures (between minus 193 °C and minus 269 °C).

The ITER cryogenic system will be the largest concentrated cryogenic system in the world. (Click to view larger version...)
The ITER cryogenic system will be the largest concentrated cryogenic system in the world.
In order to deliver the cooling fluids to the machine, a large cooling plant has been built at ITER that ranks as the most powerful single-platform cryoplant in the world.

Designed and manufactured by Air Liquide, the ITER cryoplant includes three helium refrigeration units, two nitrogen refrigeration units and 1.6 kilometres of cryogenic lines connecting the plant to the Tokamak Building. Installation activities are underway now.

The complex workings of the ITER cryoplant are explained in this video, produced by Air Liquide.

For more on Air Liquide's contribution to ITER cryogenics, visit this page.



return to the latest published articles