Subscribe options

Select your newsletters:

Please enter your email address:


News & Media

Latest ITER Newsline

  • Question of the week | Will fusion run out of fuel?

    One of the paradoxes of fusion, the virtually inexhaustible energy of the future, is that it relies on an element that does not exist—or just barely. Tritium, o [...]

    Read more

  • Managing data | Setting up a robust process

    Are the ITER systems and processes robust enough to manage the technical and project data for a program of ITER's complexity? Will quality information be made a [...]

    Read more

  • Image of the week | Bullseye

    Two perfectly circular structures, looking a lot like archery targets, have been installed on the west-facing wall of the Tokamak Complex. They are not for sh [...]

    Read more

  • Art and science | Seeking new perspectives on fusion

    Standing in the middle of the Tokamak Building, sound artist Julian Weaver positions his 3D microphone near one of the openings of the bioshield to record the s [...]

    Read more

  • Worksite photos | The view one never tires of

    For the past three-and a half years, ITER Communication has been documenting construction progress from the top of the tallest crane on the ITER worksite. Altho [...]

    Read more

Of Interest

See archived entries

Plasma physics

Be clean, be strong

Kirsten Haupt

To achieve maximum fusion efficiency in a tokamak device it is essential to limit the impurities in the plasma. But this can be a challenge, as interaction between the hot plasma and the material surfaces of the vacuum vessel causes material particles to detach and enter the swirling cloud of gas.

A deuterium plasma in WEST, the rejuvenated Tore Supra tokamak, now being equipped with a tungsten divertor to act as a test bed for ITER. The visible light-emitting regions at the edge of the plasma are the coolest. (Click to view larger version...)
A deuterium plasma in WEST, the rejuvenated Tore Supra tokamak, now being equipped with a tungsten divertor to act as a test bed for ITER. The visible light-emitting regions at the edge of the plasma are the coolest.
The laws of physics dictate the maximum plasma density that can be achieved for a given current in a tokamak, which means that in ITER—as in other tokamak devices—there will be an upper limit to the number of atoms that can be confined.

Within this limit, it is important that the plasma contain as many atoms as possible that are capable of reacting to produce fusion—in ITER's case, atoms of deuterium and tritium.

Even in trace amounts, other atoms ("impurities") dilute the core of the plasma by taking the space that could be occupied by the fusion fuels, resulting in fewer reactions and a reduction in energy production. And because fusion reactions occur in a roughly proportional manner to the square of fuel density, the "multiplier" effect sets in quickly—fewer fuel atoms result in a dramatic drop-off in fusion reactions, while more fuel results in a rapid increase.

Impurities originate from vacuum vessel and the in-vessel component materials ... iron from the steel components, beryllium from the top layers of the first-wall panels protecting the vacuum vessel, and tungsten from the divertor targets. 

Impurities not only dilute the plasma but—depending on the physical properties of the atoms involved (the number of electrons)—they can also cool it to differing degrees. "The process is similar to that in a fluorescent lamp," explains Alberto Loarte, who leads the Confinement & Modelling Section at ITER. "The electrons of the impurity atoms run into the electrons in the plasma and drain their energy, re-emitting it as electromagnetic radiation—including visible light."

The heavier elements, in particular, drain a lot of energy from the plasma through radiation because of a high number of electrons (tungsten has 74). The energy lost through impurity radiation cools the plasma down and the fusion reactions stop.

In ITER, to keep these radiative losses to a minimum, the divertor will be working from its position at the bottom of the machine to continually exhaust impurities from the plasma and limit contamination.

The very properties that make impurities unwelcome in the core of the plasma, however, can be applied to beneficial effect in the plasma edge region.

Because the energy confinement provided by the machine's magnetic fields is not perfect, large power fluxes can find their way to the edge of the plasma and onto the divertor targets. To avoid localized depositions that would be too high for the material components to withstand, scientists will inject impurity gases at the plasma edge. The radiative properties of the impurities will act to reduce the power fluxes to the material elements by dissipating their energy over a larger zone.

As the plasma in this edge/divertor region is already at temperatures much lower than those required to produce fusion power, this plasma cooling will not affect fusion power production in ITER.

return to the latest published articles