Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Cryopumps | First unit reaches ITER

    The ITER vacuum team, the European Domestic Agency Fusion for Energy, Research Instruments (RI), and the ITER Director-General were all excited to welcome the d [...]

    Read more

  • Tritium Plant Summit | A shared vision to prepare for delivery

    A summit organized at ITER Headquarters from 3 to 6 June brought together the international teams that will deliver the sub-systems of the ITER Tritium Plant. I [...]

    Read more

  • Image of the week | ITER Robots goes international

    Thinking outside the box, teamwork and ingenuity are the ingredients that make for a successful robotics engineer—all qualities that are cultivated by participa [...]

    Read more

  • In memoriam | Physicist Michael Lehnen

    The ITER Organization mourns the passing of an outstanding physicist and beloved colleague. It is with the deepest sadness and a profound sense of loss that we [...]

    Read more

  • Cross-sector advocacy | The fusion knights

    Developing fusion as a usable energy source requires an all-hands-on-deck approach. At last week's ITER workshop, fusion advocacy organizations showed the role [...]

    Read more

Of Interest

See archived entries

Coil power supply

Switching network tested in Russia

Plasma could not be created in the ITER vacuum vessel without switching network units, whose operation creates the voltage that "ionizes*" the cloud of fuel atoms in the vacuum chamber. This key system is under development at the Efremov Institute in Saint Petersburg, Russia, where tests recently concluded on a prototype unit.

These circuit breakers performed to ITER Organization specifications during recent tests at the Efremov Institute in Saint Petersburg. (Click to view larger version...)
These circuit breakers performed to ITER Organization specifications during recent tests at the Efremov Institute in Saint Petersburg.
At the start of a plasma pulse, electrical current will flow into the ITER magnet coils until they are "loaded" to the nominal operation values of each system. To start a current in the plasma, the circuit breakers of the switching network system (present in the circuits of the central solenoid and the top and bottom poloidal field coils, PF1 and PF6) will be opened to divert the current into large resistor banks. This forced passage through the resistors creates a voltage that is transferred to the coils and to the vacuum chamber, initiating gas breakdown* and initial plasma current ramp-up.

The highly complex switching network system is made up of mechanical switches designed for continuous current up to 45 kA, thyristor circuit breakers, and a two-stage counterpulse circuit that provides arc-free current transfer from the mechanical device to the resistor.

"The switching networks are a fundamental system for the ITER coil power supplies because of their role in starting the plasma current," explains electromechanical engineer Francesco Milani, who is the ITER technical responsible officer for the switching network, fast discharge unit, DC busbar and instrumentation procurement package. "Without switching networks there could be no current interruption and therefore no voltage for the plasma initiation."

From 2 to 6 April, tests were carried out on a prototype switching network unit at the Efremov Institute of Saint Petersburg, contractor to the Russian Domestic Agency for all of the electrotechnical equipment under its procurement scope. The results obtained during current commutation tests at rated current, most importantly, demonstrated full compliance with the ITER Organization technical requirements.

Milani, who witnessed the tests for the ITER Organization, confirmed that the test program has been completed satisfactorily. "The team at the Efremov Institute has been demonstrating excellent technical expertise for many years, throughout the development and design of this important coil power supply procurement package. These latest results are an important milestone for the Russian Domestic Agency and its procurement activities for ITER."

The fabrication and supply of switching equipment, busbars and energy absorbing resistors for power supply and protection of the superconducting magnetic system of the ITER reactor is the most expensive and one of the most complicated of the 25 systems falling within the scope of Russia's responsibility. According the current schedule, procurement of the system's components must be completed by 2023.

*Gas breakdown = the ionization of the injected fuelling gases, when the voltage applied across the gas separates electrons from atoms creating a "soup" of charged particles called a plasma.


return to the latest published articles