Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Busbar installation | Navigating an obstacle course

    What is simple and commonplace in the ordinary world, like connecting an electrical device to a power source, often takes on extraordinary dimension at ITER. Wh [...]

    Read more

  • Vacuum vessel assembly | Back in the starting blocks

    Close to two years have passed since vacuum vessel assembly was halted when defects were identified in the ITER tokamak's vacuum vessel sectors and thermal shie [...]

    Read more

  • Ride 4 Fusion | Scientific outreach on two wheels

    A group of fusion researchers has left Padua, Italy, for an 800-kilometre bike trip to the ITER site. Their goal? To share information about fusion energy resea [...]

    Read more

  • 11th ITER Games | Good fun under the Provencal sun

    A yearly tradition in the ITER community for more than a decade now, the ITER Games offer a pleasant way to reconnect among colleagues and neighbours after the [...]

    Read more

  • Manufacturing | Recent milestones in Russia

    Russia continues to deliver in-kind components to the ITER project according to procurement arrangements signed with the ITER Organization. Some recent manufact [...]

    Read more

Of Interest

See archived entries

Fusion machines

Searching for the perfect shape

The perfect magnetic trap may not exist, but the torus-shaped tokamak is currently the fusion device with the best performance on record so far. Source: EFDA-JET (now EUROfusion) (Click to view larger version...)
The perfect magnetic trap may not exist, but the torus-shaped tokamak is currently the fusion device with the best performance on record so far. Source: EFDA-JET (now EUROfusion)
The perfect magnetic trap doesn't exist. Over time plasma physicists have experimented with different types of cylinders, magnetic mirrors and circular or helical shapes to optimize control of the plasma. While R&D continues on many fusion energy configurations, the torus-shaped tokamak has yet to be dethroned as the highest performing fusion device.

What is the objective of a magnetic fusion trap? Fusion plasmas must remain in suspension in order to avoid contact between the superheated particles and the material vessel. As plasmas consist of electrically charged particles—positive ions and negative electrons—they can be controlled and confined by magnetic forces. ITER's magnetic "cage" will be created by superconducting coils shaping and controlling the plasma, as well as by electrical currents circulating within.

The first magnetic traps were open-ended cylinders. (Click to view larger version...)
The first magnetic traps were open-ended cylinders.
In the early days of plasma research, physicists experimented with cylindrical systems—devices with coils around a tube that created linear magnetic fields running parallel to the vessel body. But the "holes" in the magnetic trap—the cylinder's open ends—resulted in high losses of energy as the plasma particles escaped.

Source: WikiHelper2134 (Click to view larger version...)
Source: WikiHelper2134
Magnetic mirrors at the two openings of the device, essentially reflecting particles back into the cylinder, were an early attempt to solve the problem. Still, there were substantial losses of energy, despite the mirror trap.

The next solution came in the form of a closed system in which the magnetic field lines turn in on themselves—like a snake biting its tail—allowing the particles to spin indefinitely. The stellarator, with its complex geometry of twisted coils, was the first device to apply this shape, but using a complicated physical configuration that makes stellarators extremely challenging to build.

The complex geometry of the stellarator. Source: Max-Planck-Institut für Plasmaphysik (Click to view larger version...)
The complex geometry of the stellarator. Source: Max-Planck-Institut für Plasmaphysik
The torus-shaped tokamak, invented in Russia in the 1950s, also enables magnetic field lines that close to form a ring, but its smooth and symmetrical structure is much easier to build than the stellarator. However, there were early difficulties also with the tokamak design when experiments showed that electrically charged particles—while moving within the torus along magnetic field lines—would eventually drift off vertically, hit the walls and be lost.

This problem was resolved by inducing an electrical current inside the plasma, creating an additional magnetic field perpendicular to the current. As a result, the particles move in a three-dimensional curve, very much like a helix, and remain within the torus.

Today, the tokamak design rules supreme in the world of fusion. While innovators continue to experiment with a variety of devices, fuels, and approaches, the hydrogen-fuelled tokamak fusion reactor remains the device with the best performance on record so far.


return to the latest published articles