Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Worksite | First pillars for the crane hall

    For the overhead cranes to deliver machine components into the Tokamak assembly pit, the rails that carry them need to be extended some 80 metres beyond the tem [...]

    Read more

  • Transport | 300 tonnes of equipment on its way to ITER

    A specially designed assembly tool and elements of the cryostat and vacuum vessel thermal shields are part of the shipments travelling now from Korea to ITER. W [...]

    Read more

  • Fusion world | A new tokamak in town

    After EAST in China and WEST in France, another of the cardinal points of the compass has been chosen to name a tokamak. Introducing NORTH—the NORdic Tokamak de [...]

    Read more

  • Opportunities | Bringing the ITER Business Forum to Washington

    Every second year, a two-day ITER Business Forum is held to invite existing and potential suppliers for the ITER Project—laboratories, universities, and compani [...]

    Read more

  • World Energy Congress | Fusion "at a time of transition"

    In the United Arab Emirates, Abu Dhabi is often referred to as a tourism hotspot that combines luxury and ancient traditions. In September, Abu Dhabi was in the [...]

    Read more

Of Interest

See archived entries

Divertor rails

A chicken and egg situation

R.A.

In the ideal world of 3D drawings, a component's dimensions are by definition nominal and parts fit together like cogs and gears in a pricey wristwatch. The real world—even the high-precision world of ITER—is different: minute variances during the manufacturing process are inevitable, especially when components are as tall as a six-storey building ...

How can the precise dimensions and positioning of a component—i.e., a section of divertor rail— be determined when the ''as built'' references for the interfacing systemps are not yet available? (Click to view larger version...)
How can the precise dimensions and positioning of a component—i.e., a section of divertor rail— be determined when the ''as built'' references for the interfacing systemps are not yet available?
In ITER, the pieces of the machine will not only have to fit together within extremely tight tolerances; they will also need to be aligned with utmost precision against fixed reference points, such as the matrix of metrology targets disseminated throughout the Tokamak Complex.

An added difficulty arises when a reference can only be established once a set of components is completely assembled. The machine's magnetic axis for instance—a paramount reference for tokamak operation—will only be determined after the vacuum vessel is installed and an initial series of plasmas has been produced.

The localization of the machine's magnetic axis, in turn, will determine the position of the 54 cassettes of the ITER divertor situated at the bottom of the vacuum vessel.

"The 54 elements of the divertor must be aligned with extreme precision—and I'm talking tenth of millimetres here," says Divertor Section leader Frédéric Escourbiac. Divertor cassettes will be inserted by robotic handler into the vacuum vessel through the lower ports. Once inside the chamber, they will be moved along double concentric toroidal rails into their final position.

Once positioned, the cassettes will be fastened on these inner and outer rails. A slight misalignment of the circular railing could result in the misalignment of one or more of the 54 divertor cassettes—hindering operational flexibility and threatening the integrity of the divertor targets which face intense heat and electromagnetic loads from the plasma.

3D drawings provide a theoretical magnetic axis based on a perfect vacuum vessel, perfectly machined and perfectly assembled. But the "as built" reality, which will determine the precise dimensions and positioning of the rails, cannot reproduce this nominal perfection.

Divertor cassettes will be inserted by robotic handler into the vacuum vessel through the lower ports. Once inside the chamber, they will be moved along concentric toroidal rails into their final position. (Click to view larger version...)
Divertor cassettes will be inserted by robotic handler into the vacuum vessel through the lower ports. Once inside the chamber, they will be moved along concentric toroidal rails into their final position.
Engineers are left with a "chicken and egg" situation. How can the precise dimensions and positioning of the rail sections be determined when the "as built" references are not available yet?

The solution comes in the form of statistical models that compute the tolerances of all interfacing systems and take into consideration different scenarios for the localization of the magnetic axis.

This is the basis upon which the rail sections can be manufactured—not completely finalized, but "semi-finished" with extra thickness that will allow for adjustment later.

Once everything is in place—the vacuum vessel has been fully assembled and welded, interfacing systems are in place, and magnetic axis has been determined—a geometrical 3D survey can render the as-built reality with absolute accuracy. "With reverse engineering, we can then customize the rail sections and the interfacing pieces on site," says Alain Durocher, the ITER Organization responsible officer for the divertor rails.

The ITER divertor is designed to remain in place through the first decade of machine operation up to the end of the first phase of nuclear operations. The rails, however, are supposed to last for the whole duration of the ITER experiment. Their strategic importance was confirmed by a recent final design review, which recommended the realization of a mockup to mitigate risk and to practice assembly procedures.



return to the latest published articles