
The generic equatorial port plug stand at RACE faithfully reproduces all the ''critical'' parts of the remote handling operation—the size and weight of the components, for example, and all interfacing features and tolerances. Recent trials have allowed ITER Remote Handling to confirm the compatibility of system designs with planned maintenance solutions.
In a vast workshop in Oxfordshire, after months of fine-tuning, RACE team members successfully carried out two days of demonstrations on a mockup stand that reproduces a small part of ITER—the Hot Cell Complex assembly/disassembly zone where remote maintenance will be carried out on ITER's diagnostic port plugs.

The team at RACE demonstrated the vertical handling of diagnostic shield modules weighing up to 10 tonnes, including their insertion and removal along guide rails without hang-up or jam. A second operation—the insertion of diagnostic first walls into the shielding module—was also trialed successfully.
"For systems requiring remote maintenance and refurbishment it is important that remote handling requirements be taken into account early in the design phase to reduce risk of costly adaptations later," says remote handling engineer David Hamilton, who coordinates the collaboration with RACE. "All participants—ITER Remote Handling as well as ITER system owners—are fully engaged in getting the most value and benefit out of this work."

Left to right: David Cooper, Liam Forsythe and Mickael Thery from RACE; David Hamilton and Byoung Yoon Kim from the ITER Organization; Bernhard Haist, consultant to Fusion for Energy; and Julio Guirao, ITER.
Additional implementation agreements are underway relating to the remote maintenance of the vacuum vessel pressure suppression system; the feasibility of cutting and welding diagnostic first wall cooling pipes; the remote handling of vacuum flanges; synthetic viewing; test blanket module replacement, and—most recently—the maintenance of the first plasma diagnostic service modules.