Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Component delivery| A jewel in a box

    Sailing under the flag of Germany, the Regine is a mighty ship, strengthened for heavy cargo and equipped on its portside with two 750-tonne on-board cranes. Ha [...]

    Read more

  • Education | Make your own tokamak with 3D printing!

    It's not Lego, but it is definitely 'hands-on.' To offer a tangible device to illustrate the workings of magnetic confinement fusion in a tokamak, the ITER Orga [...]

    Read more

  • Worksite | Europe's Fusion for Energy is building the ITER installation

    Anyone driving to ITER can take full measure of the enormity of the project a few kilometers before reaching the destination. Gigantic cranes can be seen from a [...]

    Read more

  • Disruption mitigation | Experts in plasma disruptions gather online

    On 20-23 July, 120 international experts participated in the 1st IAEA Technical Meeting on Plasma Disruptions and their Mitigation, jointly organized by the Int [...]

    Read more

  • Start of assembly | World dignitaries celebrate a collaborative achievement

    Due to the constraints imposed by the COVID-19 pandemic, the crowd in the ITER Assembly Hall was small. But thanks to live broadcasting and video feed, the audi [...]

    Read more

Of Interest

See archived entries

Central solenoid

Module #1 nears completion

US ITER

US ITER and contractor General Atomics recently achieved a major milestone in the fabrication of the ITER central solenoid, completing vacuum pressure impregnation (VPI) on the first production module. The VPI process is the penultimate step of fabrication that turns almost 6 km of carefully wound superconducting conductor into a structurally strong, electrically insulated electromagnet.
The module fabrication team at the General Atomics Magnet Technology Center in Poway, California. Six stacked modules will form the 1,000-tonne central solenoid magnet. Photo: GA (Click to view larger version...)
The module fabrication team at the General Atomics Magnet Technology Center in Poway, California. Six stacked modules will form the 1,000-tonne central solenoid magnet. Photo: GA
"Completion of VPI is a critical step in the process and the team worked diligently and with great care to insure its success," said John Smith, project manager for General Atomics. "The first production unit now looks like a central solenoid module, and it won't be too much longer before it is complete and begins to function as one."

The central solenoid, often called the "heart of ITER," is essential for operation, serving to initiate plasma and generate the necessary current for plasma heating and sustainment. Six modules will be stacked to form the 1,000-tonne central solenoid, which will be the largest pulsed superconducting magnet in the world when it is complete. General Atomics is under contract to US ITER to fabricate the six modules plus one spare.

During vacuum pressure impregnation, the team evacuates a rigid mold encasing the coil and injects a three-part epoxy mixture to impregnate the insulation materials wrapped around each conductor turn, plus the ground insulation around the module itself. The epoxy provides both electrical insulation and structural support to the module. In a final fabrication step, piping is added and the assembly undergoes final testing.

Fabrication of the modules began in 2016 at the General Atomics Magnet Technologies Center in Poway, California. The manufacturing process takes approximately 22-24 months per module plus an additional 5-6 months of testing. Five modules are currently in various stages of production.

General Atomics has been a pioneer in fusion research and development for over 50 years and is also home to the DIII-D National Fusion Facility, funded by the Department of Energy through the Office of Fusion Energy Sciences.


return to the latest published articles