Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • CODAC | The "invisible system" that makes all things possible

    It is easy to spot all the big equipment going into ITER; what is not so visible is the underlying software that makes the equipment come alive. Local control [...]

    Read more

  • Assembly | Zero-gravity in a cramped place

    The volume of the Tokamak pit may be huge, but so are the components that need to be installed. As a result, assembly operators will have very little room to ma [...]

    Read more

  • Image of the week | A closer look at KSTAR

    Over its twelve years of operation, the KSTAR tokamak (for Korea Superconducting Tokamak Advanced Research) has built an extremely valuable database for the fut [...]

    Read more

  • Pre-compression rings | Six of nine completed

    The European Domestic Agency is responsible for the fabrication of nine pre-compression rings (three top, three bottom and three spare). The first five have bee [...]

    Read more

  • Industrial milestone | Japan completes the first D-shaped coil of the ITER Tokamak

    In a ceremony on 30 January, a major industrial achievement was celebrated in Japan—the completion of the first 360-tonne D-shaped toroidal field coil for the I [...]

    Read more

Of Interest

See archived entries

Image of the week

Don't get mixed up!

In case of a sudden loss of superconductivity in the ITER magnets (a "quench") the helium that circulates in the coils will be almost instantly discharged into dedicated double-wall quench tanks.

This complex set of hand valves and local readings of pressure, temperature and flow is part of the cooling loop that maintains the temperature inside the quench tanks at 100 K. It will provide field operators with a convenient tool for maintenance operations. (Click to view larger version...)
This complex set of hand valves and local readings of pressure, temperature and flow is part of the cooling loop that maintains the temperature inside the quench tanks at 100 K. It will provide field operators with a convenient tool for maintenance operations.
If the tanks were at ambient temperature, the thermal shock caused by cryogenic helium discharged from the magnets at just above 4 K (minus 269 °C) would result in considerable stress and shrinkage to the tank structures.

In order to prevent such a potentially damaging event, the inner vessels of the tanks must be cooled to cryogenic temperature whenever the machine is in operation. This is achieved through a cooling loop that maintains the temperature inside the tanks at 100 K (minus 173 °C)—a temperature at which shrinking has already occurred.

This valve and instrumentation panel outside of the cryoplant is part of that loop. Although measurement signals and activators from all cryogenic systems interface with the CODAC human-machine interface in the local cryo-control room, the outdoor instrumentation panel with its dozens of hand valves and local readings of pressure, temperature and flow provides field operators with a convenient tool for maintenance operations.

 


return to the latest published articles