Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Neutral beam power | "Outside and beyond anything"

    In an empty plot on the ITER platform, preparatory works have started for the construction of two new buildings. From the outside, they will look like ordinary [...]

    Read more

  • Systems installation | Anticipation and flexibility

    It is a subterranean world of scaffolding and supports, piping and cables, concrete and embedded plates. To the untrained eye, the activity underway in the base [...]

    Read more

  • Image of the week | Keeping an eye on the hot (double) pancake

    An ITER ring-shaped coil begins its existence as cable-in-conduit conductor, wound into 'double pancakes' that are eventually stacked one upon the other to form [...]

    Read more

  • Cryostat thermal shield | A "strong back" for a fragile component

    The lower cylinder thermal shield is a large silver-plated component, circular in shape and five metres tall, which fits inside the depression in the cryostat b [...]

    Read more

  • Diagnostic shielding | B4C ceramic bricks prove their worth

    A number of materials can effectively shield diagnostic equipment from the neutron flux coming from the plasma. To find the best one, the diagnostics team at IT [...]

    Read more

Of Interest

See archived entries

Image of the week

Don't get mixed up!

In case of a sudden loss of superconductivity in the ITER magnets (a "quench") the helium that circulates in the coils will be almost instantly discharged into dedicated double-wall quench tanks.

This complex set of hand valves and local readings of pressure, temperature and flow is part of the cooling loop that maintains the temperature inside the quench tanks at 100 K. It will provide field operators with a convenient tool for maintenance operations. (Click to view larger version...)
This complex set of hand valves and local readings of pressure, temperature and flow is part of the cooling loop that maintains the temperature inside the quench tanks at 100 K. It will provide field operators with a convenient tool for maintenance operations.
If the tanks were at ambient temperature, the thermal shock caused by cryogenic helium discharged from the magnets at just above 4 K (minus 269 °C) would result in considerable stress and shrinkage to the tank structures.

In order to prevent such a potentially damaging event, the inner vessels of the tanks must be cooled to cryogenic temperature whenever the machine is in operation. This is achieved through a cooling loop that maintains the temperature inside the tanks at 100 K (minus 173 °C)—a temperature at which shrinking has already occurred.

This valve and instrumentation panel outside of the cryoplant is part of that loop. Although measurement signals and activators from all cryogenic systems interface with the CODAC human-machine interface in the local cryo-control room, the outdoor instrumentation panel with its dozens of hand valves and local readings of pressure, temperature and flow provides field operators with a convenient tool for maintenance operations.

 


return to the latest published articles