Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • WEST | Revamped tokamak completes 1st phase of operation

    One day, in the latter half of this decade, it will be routine at ITER: dozens of operators, with eyes riveted to their individual monitors as numbers, graphs a [...]

    Read more

  • Roof modules | Patience, precision and a crane's long arm

    In the spring of 2020 a new and strategic phase of ITER construction will begin: the assembly of the ITER Tokamak. In order to deliver machine components to the [...]

    Read more

  • Image of the week | "Bringing light and hope"

    Most international organizations are headquartered in large cities—the UN in New York, UNESCO and the International Energy Agency in Paris, the IAEA in Vienna, [...]

    Read more

  • Outreach in China | A week devoted to fusion

    A new biennial event in China seeks to create a comprehensive exchange platform for the scientists, engineers and industries that are driving the country's stro [...]

    Read more

  • Monaco-ITER Fellows | New campaign announced

    The seventh recruitment campaign for the Monaco-ITER postdoctoral fellowship program opens on 13 January. Since 2008, thirty postdocs have carried out origin [...]

    Read more

Of Interest

See archived entries

Image of the week

Don't get mixed up!

In case of a sudden loss of superconductivity in the ITER magnets (a "quench") the helium that circulates in the coils will be almost instantly discharged into dedicated double-wall quench tanks.

This complex set of hand valves and local readings of pressure, temperature and flow is part of the cooling loop that maintains the temperature inside the quench tanks at 100 K. It will provide field operators with a convenient tool for maintenance operations. (Click to view larger version...)
This complex set of hand valves and local readings of pressure, temperature and flow is part of the cooling loop that maintains the temperature inside the quench tanks at 100 K. It will provide field operators with a convenient tool for maintenance operations.
If the tanks were at ambient temperature, the thermal shock caused by cryogenic helium discharged from the magnets at just above 4 K (minus 269 °C) would result in considerable stress and shrinkage to the tank structures.

In order to prevent such a potentially damaging event, the inner vessels of the tanks must be cooled to cryogenic temperature whenever the machine is in operation. This is achieved through a cooling loop that maintains the temperature inside the tanks at 100 K (minus 173 °C)—a temperature at which shrinking has already occurred.

This valve and instrumentation panel outside of the cryoplant is part of that loop. Although measurement signals and activators from all cryogenic systems interface with the CODAC human-machine interface in the local cryo-control room, the outdoor instrumentation panel with its dozens of hand valves and local readings of pressure, temperature and flow provides field operators with a convenient tool for maintenance operations.

 


return to the latest published articles