Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Image of the week | Tokamak-sur-mer

    At the height of the heat wave, in late June, surface temperature on the ITER worksite climbed to the 50 °C range. To continue work—and protect workers—a series [...]

    Read more

  • Space propulsion | Have fusion, will travel

    The idea of propelling rockets and spaceships using the power of the atom is nothing new: the Manhattan Project in the mid-1940s as well as countless endeavours [...]

    Read more

  • Cold fusion | End of story?

    Thirty years ago, two electrochemists at the University of Utah, Martin Fleischmann and Stanley Pons, created a sensation when they claimed they had achieved fu [...]

    Read more

  • Magnet feeders | Wave of deliveries ahead

    Several batches of magnet feeder components will arrive from China in September containing elements that need to be received, inspected and readied for installa [...]

    Read more

  • Tokamak cooling system procurement | Global team for better efficiency

    A unique work-sharing arrangement is expediting the design and fabrication of ITER's tokamak cooling water system and building the knowledge base that will be c [...]

    Read more

Of Interest

See archived entries

Powerful lasers

A mockup to demonstrate safety

Kirsten Haupt

During ITER operation, high-powered lasers will gather important diagnostic information on the properties and behaviour of the plasma, such as density, temperature and internal magnetic field.  An integrated safety system will ensure that the lasers operate safely in all circumstances, including the unexpected.

The safety system for the lasers moving between the Diagnostics Building and the vacuum vessel consists of several layers, including physical barriers and instrumented interruption functions, explains diagnostic physicist Christopher Watts. (Click to view larger version...)
The safety system for the lasers moving between the Diagnostics Building and the vacuum vessel consists of several layers, including physical barriers and instrumented interruption functions, explains diagnostic physicist Christopher Watts.
Lasers are common objects in our daily lives, found in CD/DVD players, office printers, the computer mouse, and laser pointers. But the lasers employed in ITER's diagnostic systems, according to diagnostic physicist Christopher Watts, are "about 100,000 more powerful than a laser pointer."

High-powered laser beams generated in the Diagnostics Building will be relayed by a series of mirrors along beam tubes through the galleries and port cells into the vacuum vessel. There, they will focus on various locations inside the plasma to obtain the needed data and return to the Diagnostics Building with their precious information.

Because unprotected laser beams—many radiating in the invisible spectrum—could be hazardous to the human eye, the beams are enclosed in metal pipes along the entire transmission line. But safety must be ensured even in the case of an accidental or unexpected breach in the laser enclosure.

Watts has been working with occupational safety engineer Roger Victori from the Control System Division to develop a reactive safety system that can respond in all situations (normal or accidental) and during all phases (operation, servicing, alignment). "We have developed a several-layer system that includes physical barriers as well as instrumented interruption functions," Watts explains.

In order to test the safety features of the system, they developed a tabletop mockup that employs a low-powered laser that is safe under all conditions. The mockup mimics the lasers' journey between the Diagnostic Building and the vacuum vessel, simulating the key elements of dormant safety measures that spring into action when a breach in the laser enclosure triggers an alert.

The mockup's controls and sensors are coupled to an automated logic system controlling the safety aspects. These measures include automated laser beam "blocks" at various locations along the transmission path that can engage to keep the laser confined to a certain region. If physical shielding is insufficient to mitigate the safety risk, electrical actuators interrupt the electrical power supply, shutting the laser down.

Already the mockup has proven useful, as it has helped identify key safety and operational interdependencies. Once the logic and specifications of the safety functions are worked out in detail, the mockup safety system will be provided to the laser diagnostic suppliers as an example of a system that meets ITER's safety requirements.

 


return to the latest published articles