Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Image of the week | Tokamak-sur-mer

    At the height of the heat wave, in late June, surface temperature on the ITER worksite climbed to the 50 °C range. To continue work—and protect workers—a series [...]

    Read more

  • Space propulsion | Have fusion, will travel

    The idea of propelling rockets and spaceships using the power of the atom is nothing new: the Manhattan Project in the mid-1940s as well as countless endeavours [...]

    Read more

  • Cold fusion | End of story?

    Thirty years ago, two electrochemists at the University of Utah, Martin Fleischmann and Stanley Pons, created a sensation when they claimed they had achieved fu [...]

    Read more

  • Magnet feeders | Wave of deliveries ahead

    Several batches of magnet feeder components will arrive from China in September containing elements that need to be received, inspected and readied for installa [...]

    Read more

  • Tokamak cooling system procurement | Global team for better efficiency

    A unique work-sharing arrangement is expediting the design and fabrication of ITER's tokamak cooling water system and building the knowledge base that will be c [...]

    Read more

Of Interest

See archived entries

Central solenoid

Fabrication complete on first of 7 modules

US ITER

When ITER begins operations in 2025, its plasma will be initiated by the largest stacked pulsed superconducting magnet ever built—the ITER central solenoid. The US ITER magnets team, based at Oak Ridge National Laboratory, is overseeing the fabrication of the central solenoid modules, support structures, and assembly tooling. A major milestone was reached this spring when vendor General Atomics completed fabrication of the first of seven modules.

Before a 110-tonne module can be completed, it must be turned over by a specialized handling tool. US ITER contractor General Atomics is fabricating seven modules for the central solenoid (six plus one spare). Photo: GA (Click to view larger version...)
Before a 110-tonne module can be completed, it must be turned over by a specialized handling tool. US ITER contractor General Atomics is fabricating seven modules for the central solenoid (six plus one spare). Photo: GA
"General Atomics has done an outstanding job to reach the difficult and important milestone of completing module 1 fabrication," said Wayne Reiersen, US ITER Central Solenoid Magnets Team Leader. "This is the culmination of an eight-year effort involving concurrent engineering of the module design, the creation of a facility in which these powerful superconducting magnets could be built and tested, the qualification of the manufacturing processes, and the building of this first-of-a-kind module."

The module during completion of helium piping. Photo: GA (Click to view larger version...)
The module during completion of helium piping. Photo: GA
The next step for the module is intensive testing to ensure that the component is ready to perform in the ITER Tokamak. The module has already completed the first Paschen voltage test as well as a global leak test.

The central solenoid will be installed in the centre of the ITER machine, and will drive up to 45,000 amps of current in each module during plasma operation. Six modules will be stacked to form the 17-metre-tall solenoid, while the seventh module will serve as a spare.

Fabrication of each module requires multiple fabrication steps spread out over 24 months.

Click here to read the General Atomics press release.

For a detailed view of the module manufacturing process, see "Building the Heart of ITER" on the Oak Ridge National Laboratory YouTube channel.


return to the latest published articles