Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Busbar installation | Navigating an obstacle course

    What is simple and commonplace in the ordinary world, like connecting an electrical device to a power source, often takes on extraordinary dimension at ITER. Wh [...]

    Read more

  • Vacuum vessel assembly | Back in the starting blocks

    Close to two years have passed since vacuum vessel assembly was halted when defects were identified in the ITER tokamak's vacuum vessel sectors and thermal shie [...]

    Read more

  • Ride 4 Fusion | Scientific outreach on two wheels

    A group of fusion researchers has left Padua, Italy, for an 800-kilometre bike trip to the ITER site. Their goal? To share information about fusion energy resea [...]

    Read more

  • 11th ITER Games | Good fun under the Provencal sun

    A yearly tradition in the ITER community for more than a decade now, the ITER Games offer a pleasant way to reconnect among colleagues and neighbours after the [...]

    Read more

  • Manufacturing | Recent milestones in Russia

    Russia continues to deliver in-kind components to the ITER project according to procurement arrangements signed with the ITER Organization. Some recent manufact [...]

    Read more

Of Interest

See archived entries

Electron cyclotron transmission lines

Design phase ends

US ITER is ready to start manufacturing high-power microwave transmission lines for the electron cyclotron resonance heating system.
A prototype electron cyclotron transmission line assembly. Photo: US ITER (Click to view larger version...)
A prototype electron cyclotron transmission line assembly. Photo: US ITER
After several years of design analysis, prototyping and strict attention to complex structural demands, the US ITER electron cyclotron heating line team completed a final design review of transmission lines for the microwave plasma heating system. The team is now preparing for initial fabrication contracts.

"Our thermal mechanical analysis at the system and component level were top notch," said US ITER team lead Kurt Vetter. "The prototyping validated that we could achieve tolerances and be aligned with the analyses of the transmission line components. We clearly showed this during the review."

In a first for US ITER, the final design review was completed entirely remotely, a necessity due to travel restrictions related to COVID-19. Over 50 people from across the global ITER fusion project participated in the review.

The microwave heating system includes over 4 km of transmission lines, plus components such as switches, bends, couplings and bellows. The electron cyclotron system will provide 20 MW of heating power to the ITER plasma. A major challenge of the design is assuring that minimal power losses, or microwave mode changes, occur along the length of the transmission lines. The ITER performance requirements have never before been achieved on transmission lines of this length or power.

Senior project engineer Greg Hanson noted that there were multiple areas of improvement as the team prepared the final design, including demonstration that a 50 mm diameter transmission line was optimum for microwave performance.

As the team moves into fabrication, a major early effort is focused on establishing a reliable manufacturing process for the transmission lines, which will mostly be produced in three-metre lengths. Inside the aluminium transmission line, finely specified corrugations will serve as guides for the microwaves to move along the lines.

The team also established that structural supports for the lengthy system are a critical part of optimizing transmission line performance. The transmission lines traverse three buildings at the ITER facility—each one with its own foundations and seismic requirements.

"Because of the sensitivity of electron cyclotron transmission line performance to additional components, which can add gaps to the line, we had to find a very specific balance to locate additional couplings or bellows without degrading microwave power modes," said Zach Wolfe, a project engineer who led the structural design and analysis effort.

ITER will rely on three forms of plasma heating: neutral beams for bulk heat, with supplemental resonant heating by the ion cyclotron system, and electron cyclotron heating for depositing heat in specific locations during all phases of a plasma pulse. Through a switching system, the electron cyclotron transmission lines can direct power to upper launchers, in order to target power deposition, or to equatorial launchers for general plasma current drive or even counter-current drive. The system can also be used to accelerate or decelerate plasma current.

The total electron cyclotron heating system is a deeply international effort, as the European Union, India, Russia, and Japan are also contributing components, including power supplies, gyrotrons (see related article in this issue), and launchers for the system.

See the original article on the US ITER website.


return to the latest published articles