Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Cryostat thermal shield | A "strong back" for a fragile component

    The lower cylinder thermal shield is a large silver-plated component, circular in shape and five metres tall, which fits inside the depression in the cryostat b [...]

    Read more

  • Diagnostic shielding | B4C ceramic bricks prove their worth

    A number of materials can effectively shield diagnostic equipment from the neutron flux coming from the plasma. To find the best one, the diagnostics team at IT [...]

    Read more

  • Image of the week | The cryostat top lid, batch after batch

    Batch after batch, the elements for the top lid of the ITER cryostat keep arriving from India. As of today, 7 out of the 12 required segments have been delivere [...]

    Read more

  • Cooling water system | The tanks within a tank

    Deep inside the bowels of the Tokamak Building, the entrance to one of most spectacular rooms of the whole installation resembles that of a broom cupboard. [...]

    Read more

  • ITER assembly | Last major assembly contract signed

    One year after finalizing two major machine assembly contracts, the ITER Organization has chosen the contractors who will carry out assembly and installation ac [...]

    Read more

Of Interest

See archived entries

Cryodistribution

Blowing cold and hot

If the cryodistribution system were a railroad, the cryogenic termination cold box would be its main switch. A massive structure packed with pipes, valves, electrical feedthroughs and pneumatic actuators, the termination cold box collects the cooling fluids from the cryoplant and redirects them to the Tokamak Building over an elevated bridge. Once inside the building, another set of smaller cold boxes, called "auxiliary" boxes, dispatches the fluids to their different clients— supercritical helium at 4.7 K to the magnets and cryopumps, gaseous helium at 80 K to the thermal shield.
 
ITER technical responsible officer Hyun Sik Chang (right) and a technician from the Swiss company Linde Kryotechnik AG, perform the cleanliness check protocol on the box's multiprocess cryolines. (Click to view larger version...)
ITER technical responsible officer Hyun Sik Chang (right) and a technician from the Swiss company Linde Kryotechnik AG, perform the cleanliness check protocol on the box's multiprocess cryolines.
During operation, the ITER superconducting magnet system (all 10,000 tonnes of it), the cryopumps and the thermal shield must be kept at cryogenic temperature. But when maintenance is scheduled, this huge mass of frigid components must be brought back up to room temperature.
 
 "Because of the considerable mass of the superconducting magnets, and of the quality of the  machine's vacuum insulation, it would take several weeks for the ultra-cold components to warm up and allow maintenance," explains David Grillot, the head of ITER Cryogenic System Section. Hence the second mission of the cryogenic termination cold box: to bring the magnets and their environment to room temperature.
 
Procured by ITER India and manufactured by the Swiss company Linde Kryotechnik AG, the cryogenic termination cold box is a massive structure packed with pipes, valves, electrical feedthroughs and pneumatic actuators. (Click to view larger version...)
Procured by ITER India and manufactured by the Swiss company Linde Kryotechnik AG, the cryogenic termination cold box is a massive structure packed with pipes, valves, electrical feedthroughs and pneumatic actuators.
Magnets are maintained at cryogenic temperature by a constant flow of supercritical helium (neither liquid nor gaseous, but a bit of both) from the cryoplant systems. When the time comes to warm up the machine, the cooling fluid from the cryoplant is diverted to a parallel circuit that takes it through a set of powerful electrical heaters before being blown into the magnets.
 
"Let's say that instead of continuing to blow very cold, we blow warmer and warmer, with small increments on the order of one degree per hour in order to prevent mechanical constraints," says Grillot. "Progressively, over the course of a few days, the magnets' temperature rises from that of a winter night on Pluto to that of a balmy spring day in Provence, and the machine become accessible for maintenance operations."
 
Bringing the temperature inside the machine from that of a winter night on Pluto to that of a balmy spring day in Provence. Pictured: David Grillot, the head of ITER Cryogenic System Section. (Click to view larger version...)
Bringing the temperature inside the machine from that of a winter night on Pluto to that of a balmy spring day in Provence. Pictured: David Grillot, the head of ITER Cryogenic System Section.
Procured by ITER India, the cryogenic termination cold box is manufactured by the Swiss company Linde Kryotechnik AG. Installation in the cryoplant began in early July and should be completed by the end of this month.


return to the latest published articles