Enable Recite

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Data | Archiving 20 gigabytes per second—and making it usable

    One of the main deliverables of ITER is the data itself—and there will be a tremendous amount of it to store and analyze. During First Plasma, the highest produ [...]

    Read more

  • Electrical tests | High voltage, high risk

    In the southern part of the construction platform, a one-hectare yard hosts some of the strangest-looking components of the entire ITER installation. Rows of to [...]

    Read more

  • Vacuum vessel | First sector safely docked

    It was 8:00 p.m. on Tuesday 6 April and something quite unusual happened in the ITER Assembly Hall: applause spontaneously erupted from the teams that h [...]

    Read more

  • Remote ITER Business Meeting | Virtual interaction, tangible opportunities

    While the advent of Covid-19 has not stopped the relentless advancement of the ITER Project, it has certainly prompted ingenuity in how ITER conducts its work. [...]

    Read more

  • Manufacturing | Europe completes pre-compression rings

    The French company CNIM (Toulon) has produced a tenth pre-compression ring for the ITER Project on behalf of Fusion for Energy, the European Domestic Agency. Th [...]

    Read more

Of Interest

See archived entries

Poloidal field magnet #1

Russian team completes vacuum pressure impregnation

ITER's smallest poloidal field magnet—PF1—has successfully completed one of the final stages of production, resin impregnation, at the Sredne-Nevsky Shipyard in Saint Petersburg.

The 200-tonne PF1 magnet assembly has successfully undergone vacuum pressure impregnation. After factory acceptance tests later this year, PF1 will be prepared for shipment to ITER. (Click to view larger version...)
The 200-tonne PF1 magnet assembly has successfully undergone vacuum pressure impregnation. After factory acceptance tests later this year, PF1 will be prepared for shipment to ITER.
Experts from the Efremov Institute (JSC NIIEFA, ROSATOM) and the Sredne-Nevsky Shipyard have successfully completed the vacuum pressure impregnation process on the coil winding pack of PF1. Acting inside of a vacuum mould and under the effect of heat, epoxy resin hardens the coil winding pack into a rigid assembly and ensures its electrical insulation. This crucial manufacturing milestone comes after a number of technological milestones were achieved last year.

Poloidal field coil #1 (PF1) is one of six poloidal field coils designed for plasma confinement in the ITER machine. Nine metres in diameter, 200 tonnes, the magnet is a complex system whose building blocks—eight double pancakes wound from niobium-titanium cable-in-conduit conductor—have been stacked and joined electrically. Just over 6 kilometres of superconductor were used during winding of PF1; this material was supplied by Russian enterprises JSC "TVEL", JSC "CHMZ", JSC "VNIINM", and JSC "VNIIKP."

Due to the first-of-a kind nature of the component and the extremely high performance and quality requirements imposed by the ITER Organization, the manufacture of PF1 required the development of advanced technologies and technological processes. The most important technologies, as well as the equipment for manufacturing, were developed at the Efremov Institute of Electrophysical Apparatus.

According to Anatoly Krasilnikov, head of the Russian Domestic Agency, it is difficult to overestimate the importance of achieving this critical stage of fabrication. "The main difficulty of impregnation was the irreversibility of the operation; it would have been impossible to alter anything in case of failure. But we had no doubts that we would succeed because a truly high-class team is working on the manufacture of the coil."

Vacuum pressure impregnation confers extremely high dielectric and mechanical strength to superconducting coils. Following its successful conclusion, PF1 will go through a number of further technological operations such as the addition of clamps, protective covers and pipes. The finished product will undergo factory acceptance tests before shipment to the ITER site in 2022.



return to the latest published articles