Enable Recite

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Central solenoid | 1st delivery celebrated on both sides of the Atlantic

    Standing 18 metres tall at the very heart of the ITER Tokamak, the central solenoid will generate an intense magnetic field which, in turn, will induce an elect [...]

    Read more

  • Tooling | Radial beam fits just right

    When describing operations inside the ITER in the assembly theatre, one is invariably tempted to call up images from the realm of science fiction. How else to c [...]

    Read more

  • Fusion world | Curtain call for the COMPASS tokamak

    After 12 years of operation and 21,000 plasma shots, the Czech tokamak COMPASS ceased operation on 20 August 2021. The tokamak will now be disassembled to make [...]

    Read more

  • Engineering | US to deliver "tough" electronics to ITER

    ITER, a machine that will imitate the sun, will also mimic the sun's extreme environment: intense heat, strong magnetic fields and radiation. A team at US I [...]

    Read more

  • Image of the week | The lighthouse in the pit

    Like a lighthouse (without a beacon) the central column rises more than 20 metres above the floor of the assembly pit. The massive structure does not belong to [...]

    Read more

Of Interest

See archived entries

Vacuum vessel in Europe

Fitting the pieces virtually

A "virtual fit" tool developed by the European Domestic Agency is helping the vacuum vessel manufacturing team anticipate the challenge of final assembly—the moment when four sub-segments are brought together and welded to form the final 440-tonne sector.  By visualizing alignment challenges and eventual clashes or gaps, the team is saving time and reducing risk.

Contractors at Mangiarotti (Italy) carry out ultrasound tests on the PS1 segment of vacuum vessel sector #5. Four poloidal segments will be aligned and welded to form one 40-degree section of the ITER vacuum vessel. (Click to view larger version...)
Contractors at Mangiarotti (Italy) carry out ultrasound tests on the PS1 segment of vacuum vessel sector #5. Four poloidal segments will be aligned and welded to form one 40-degree section of the ITER vacuum vessel.
Each D- shaped ITER vacuum vessel sector is an assembly of four smaller manufactured pieces—the inboard, upper, equatorial and lower poloidal segments. In the final production stage, the completed segments, which weigh approximately 100 tonnes each, must be brought together on an assembly platform to be aligned within exacting tolerances and welded.  

With only millimetres to spare and huge components to be adjusted by crane, the operation is a challenging one. For vacuum vessel sector #5—the first in the European series—Fusion for Energy has introduced a virtual tool that takes metrology data from the completed segments and fits them together virtually, in advance of the actual operation.

The tool is capable of generating a simulation based on more than 1 million surveyed points, and highlighting various interface zones. By simulating different alignment scenarios, the contractors are able to arrive at the best and most optimized fit solution.

"It helps project managers to minimize risks and have a precise control of the assembly," explains Fusion for Energy metrology expert Alessandro Lo Bue, who worked with colleague Edoardo Pompa (SETIS Groupe Degaud) to build the methodology for virtual fitting from specialized software (SpatialAnalyzer®).

The tool has been in use for vacuum vessel sector #5 since November 2020.

See a report on the Fusion for Energy website here.



return to the latest published articles