Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Cryopumps | First unit reaches ITER

    The ITER vacuum team, the European Domestic Agency Fusion for Energy, Research Instruments (RI), and the ITER Director-General were all excited to welcome the d [...]

    Read more

  • Tritium Plant Summit | A shared vision to prepare for delivery

    A summit organized at ITER Headquarters from 3 to 6 June brought together the international teams that will deliver the sub-systems of the ITER Tritium Plant. I [...]

    Read more

  • Image of the week | ITER Robots goes international

    Thinking outside the box, teamwork and ingenuity are the ingredients that make for a successful robotics engineer—all qualities that are cultivated by participa [...]

    Read more

  • In memoriam | Physicist Michael Lehnen

    The ITER Organization mourns the passing of an outstanding physicist and beloved colleague. It is with the deepest sadness and a profound sense of loss that we [...]

    Read more

  • Cross-sector advocacy | The fusion knights

    Developing fusion as a usable energy source requires an all-hands-on-deck approach. At last week's ITER workshop, fusion advocacy organizations showed the role [...]

    Read more

Of Interest

See archived entries

Central solenoid

The stacking has begun

The central solenoid is one of the most massive components of the ITER machine, as tall as a seven-storey building and weighing in excess of 1,000 tonnes. Made of six 110-tonne cylindrical modules stacked one on top of another and connected by a delicate network of cables and piping, this monster magnet plays an essential role in ITER operation. Its function is to induce and sustain a powerful current (15 MA) inside the plasma. On Tuesday 5 September, the second module of the six-module stack was moved into position on the component's dedicated assembly platform.

In one corner of the ITER Assembly Hall, work has started on the second of the six modules. Once all six are stacked one on top of another, they will form the 18-metre-tall, 1,000-tonne ITER central solenoid. (Click to view larger version...)
In one corner of the ITER Assembly Hall, work has started on the second of the six modules. Once all six are stacked one on top of another, they will form the 18-metre-tall, 1,000-tonne ITER central solenoid.
Whether in the Tokamak assembly pit, in one of the twin sub-assembly tools or in any support or transport structure, the positioning of a component requires both heavy machinery and subtle adjustment devices. This is particularly true of the central solenoid modules: as the approximately 2-metre-tall components are stacked upon one another, any deviation from nominal would be progressively amplified as the stacking progresses. And the tolerance for deviation is low: no more than 20 mm for the 18-metre-tall structure once completed.

It takes a whole range of tools to position the 110-tonne component with the required precision: once cranes and ''synch hoists'' have done the heavy job, a complex system of subtle adjustment devices allows micrometric movements in pitch, roll and spin. (Click to view larger version...)
It takes a whole range of tools to position the 110-tonne component with the required precision: once cranes and ''synch hoists'' have done the heavy job, a complex system of subtle adjustment devices allows micrometric movements in pitch, roll and spin.
Stacking cylindrical devices and connecting their fragile electrical and cryogenics leads demands a particular attention to concentricity and straightness. "We have a target of concentricity between two cylinders of about 0.2 mm and the same for straightness (0.2 mm over 350 mm)," says Carl Cormany, the superconductor engineer responsible for central solenoid assembly. Such precision is achieved through a complex system of adjustment devices whose manual handles allow micrometric movements in pitch, roll and spin.

''In terms of precision, nothing is trivial,'' says Carl Cormany, the superconductor engineer responsible for central solenoid assembly. He is seen here standing on top of the scaffolding that gives access to the inside of the module. (Click to view larger version...)
''In terms of precision, nothing is trivial,'' says Carl Cormany, the superconductor engineer responsible for central solenoid assembly. He is seen here standing on top of the scaffolding that gives access to the inside of the module.
For operations as strategic as installing ITER components and systems, precision is taken into account long before platforms and tooling are installed. "In terms of precision, nothing is trivial," specifies Cormany. "The formulation of the concrete that anchors the platform plays a part, as does the way bolts are tightened." For a specialist in superconductivity, this is a new domain of expertise.

A third central solenoid module was received at ITER in June and a fourth is expected to ship before the end of the year. In total, US ITER contractor General Atomics is providing seven modules to the ITER Organization, one of them a spare.



return to the latest published articles