Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Vacuum components | Shake, rattle, and... qualify!

    A public-private testing partnership certified that ITER's vacuum components can withstand major seismic events. Making sure the ITER tokamak will be safe in th [...]

    Read more

  • Feeders | Delivering the essentials

    Like a circle of giant syringes all pointing inward, the feeders transport and deliver the essentials to the 10,000-tonne ITER magnet system—that is, electrical [...]

    Read more

  • Image of the week | It's FAB season

    It's FAB season at ITER. Like every year since 2008, the Financial Audit Board (FAB) will proceed with a meticulous audit of the project's finances, siftin [...]

    Read more

  • Disruption mitigation | Final design review is a major step forward

    The generations of physicists, engineers, technicians and other specialists who have worked in nuclear fusion share a common goal, dedication and responsibility [...]

    Read more

  • Image of the week | Like grasping a bowl of cereal

    Contrary to the vast majority of ITER machine components, the modules that form the central solenoid cannot be lifted by way of hooks and attachments. The 110-t [...]

    Read more

Of Interest

See archived entries

Fusion world

Milestone for China's HL-3 device

The team operating the HL-3 tokamak reports operating for the first time in high-confinement mode (H-mode) with a plasma current of one million amperes.

High-confinement mode, or H-mode, is an advanced mode of operation in magnetic confinement fusion devices that can improve the efficiency of a fusion reactor. China's HL-3 device recently achieved H-mode operation with a current of one million amperes. (Click to view larger version...)
High-confinement mode, or H-mode, is an advanced mode of operation in magnetic confinement fusion devices that can improve the efficiency of a fusion reactor. China's HL-3 device recently achieved H-mode operation with a current of one million amperes.
HL-3 is a research device located at the Center of Fusion Science/Southwestern Institute of Physics (SWIP) in Chengdu, China. Its construction was a decade-long project that cumulated with the completion of first plasma in December 2020. (The device used to be referred to as HL-2M.) Two years later, in October, the device achieved operation with a plasma current of one million amperes. Last month, the device achieved repeatable 1 MA/H-mode operation.

"This [latest milestone] once again broke the operation record of China's nuclear fusion devices with magnetic confinement, overcoming many technical challenges. This milestone holds great importance in China's nuclear fusion energy development, signifying a crucial step forward in the research of high-performance nuclear fusion plasma operation," said the press release released by the China National Nuclear Corporation, CNNC.

The success of operation in H-mode is the result of upgrades to the device's heating, operation and control, diagnostic, and power supply system. The next goal for HL-3 is to increase the fusion triple product—a plasma's particle density, energy confinement time, and ion temperature—to attain the kind of high plasma performance that is needed to study frontier fusion plasma physics.

Read more about the milestone on the CNNC and CGTN websites. 



return to the latest published articles