Subscribe options

Select your newsletters:

Please enter your email address:


Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • ITER Design Handbook | Preserving the vital legacy of ITER

    The contributions that ITER is making to fusion physics and engineering—through decades of decisions and implementation—are delivering insights to the fusion co [...]

    Read more

  • Electron cyclotron heating | Aligning technology and physics

    ITER, like other fusion devices, will rely on a mix of external heating technologies to bring the plasma to the temperature necessary for fusion. At a five-day [...]

    Read more

  • Poloidal field magnets | The last ring

    As the massive ring-shaped coil inched its way from the Poloidal Field Coils Winding Facility, where it was manufactured, to the storage facility nearby where i [...]

    Read more

  • Heat rejection | White "smoke" brings good news

    Like a plume of white smoke rising from a cardinals' conclave to announce the election of a new pope, the tenuous vapour coming from one of the ITER cooling cel [...]

    Read more

  • WEC 2024 | Energy on centre stage

    The global players in the energy sector convened in Rotterdam last week for the 26th edition of the World Energy Congress (WEC). The venue was well chosen, wit [...]

    Read more

Of Interest

See archived entries

Fusion world

TCV tokamak turns 30

The Swiss TCV tokamak (for Tokamak à Configuration Variable, or "variable configuration" tokamak) has been exploring the physics of nuclear fusion for 30 years and training generations of students in the process.

Just ''warming up'' after three decades of fusion energy research, says the team at the EPFL Swiss Plasma Center. The TCV tokamak at 30. (Click to view larger version...)
Just ''warming up'' after three decades of fusion energy research, says the team at the EPFL Swiss Plasma Center. The TCV tokamak at 30.
An integral part of the Swiss Plasma Center at EPFL (the Swiss Federal Institute of Technology Lausanne), TCV has a staff of about 200 researchers and students.

The mission of the TCV program, according to a press release issued this month, is to apply the device's highly specialized plasma shaping capability to develop new plasma configurations and plasma shapes. Combined with a wide range of versatile heating and current drive schemes and up-to-date measurement and control systems, TCV is a powerful tool to explore the physics of magnetically confined plasmas. Research on TCV supports experimental reactors under construction, such as ITER, and also investigates new and alternative avenues in view of future prototype power plants.

"Our work at the Swiss Plasma Center over the past 30 years has provided key insights into plasma behaviour," says Director Ambrogio Fasoli. "The TCV plays a vital role in this endeavour. Recent upgrades to its infrastructure have expanded our capability to investigate key issues for ITER, DEMO, and future fusion reactors."

Because EPFL's tokamak is a "variable configuration" reactor, scientists can use it to observe how changes in plasma configuration affect the plasma's properties like temperature and confinement quality or to study new plasma configurations. TCV can also be used to evaluate different configurations for divertors, an essential component for plasma exhaust in a fusion reactor. The Swiss Plasma Center recently teamed up with Google DeepMind to develop a new magnetic control method for plasmas, based on deep reinforcement learning, and successfully applied it to real-world plasma configurations in the TCV tokamak for the first time.

"The challenges ahead are substantial," says Fasoli, "but we are well-positioned to make significant contributions to the development of fusion energy as a critical component of the future global energy mix."

Read the full press release here.

return to the latest published articles