Subscribe options

Select your newsletters:

Please enter your email address:


Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Image of the week | More cladding and a new message

    As the October sun sets on the ITER worksite, the cladding of the neutral beam power buildings takes on a golden hue. One after the other, each of the scientifi [...]

    Read more

  • Cryodistribution | Cold boxes 20 years in the making

    Twenty years—that is how long it took to design, manufacture and deliver the cold valve boxes that regulate the flow of cryogens to the tokamak's vacuum system. [...]

    Read more

  • Open Doors Day | Face to face with ITER immensity

    In October 2011, when ITER organized its first 'Open Doors Day,' there was little to show and much to leave to the public's imagination: the Poloidal Field [...]

    Read more

  • Fusion | Turning neutrons into electricity

    How will the power generated by nuclear fusion reactions be converted into electricity? That is not a question that ITER has been designed to answer explicitly, [...]

    Read more

  • Fusion world | JET completes a storied 40-year run

    In its final deuterium-tritium experimental campaign, Europe's JET tokamak device demonstrated plasma scenarios that are expected on ITER and future fusion powe [...]

    Read more

Of Interest

See archived entries

Fusion world

TCV tokamak turns 30

The Swiss TCV tokamak (for Tokamak à Configuration Variable, or "variable configuration" tokamak) has been exploring the physics of nuclear fusion for 30 years and training generations of students in the process.

Just ''warming up'' after three decades of fusion energy research, says the team at the EPFL Swiss Plasma Center. The TCV tokamak at 30. (Click to view larger version...)
Just ''warming up'' after three decades of fusion energy research, says the team at the EPFL Swiss Plasma Center. The TCV tokamak at 30.
An integral part of the Swiss Plasma Center at EPFL (the Swiss Federal Institute of Technology Lausanne), TCV has a staff of about 200 researchers and students.

The mission of the TCV program, according to a press release issued this month, is to apply the device's highly specialized plasma shaping capability to develop new plasma configurations and plasma shapes. Combined with a wide range of versatile heating and current drive schemes and up-to-date measurement and control systems, TCV is a powerful tool to explore the physics of magnetically confined plasmas. Research on TCV supports experimental reactors under construction, such as ITER, and also investigates new and alternative avenues in view of future prototype power plants.

"Our work at the Swiss Plasma Center over the past 30 years has provided key insights into plasma behaviour," says Director Ambrogio Fasoli. "The TCV plays a vital role in this endeavour. Recent upgrades to its infrastructure have expanded our capability to investigate key issues for ITER, DEMO, and future fusion reactors."

Because EPFL's tokamak is a "variable configuration" reactor, scientists can use it to observe how changes in plasma configuration affect the plasma's properties like temperature and confinement quality or to study new plasma configurations. TCV can also be used to evaluate different configurations for divertors, an essential component for plasma exhaust in a fusion reactor. The Swiss Plasma Center recently teamed up with Google DeepMind to develop a new magnetic control method for plasmas, based on deep reinforcement learning, and successfully applied it to real-world plasma configurations in the TCV tokamak for the first time.

"The challenges ahead are substantial," says Fasoli, "but we are well-positioned to make significant contributions to the development of fusion energy as a critical component of the future global energy mix."

Read the full press release here.

return to the latest published articles