Enable Recite

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Manufacturing | Completion of the first vacuum vessel gravity support

    The factory acceptance test on the first ITER vacuum vessel gravity support has been successfully completed at Haneul Engineering in Gunsan, Korea. Under the 8, [...]

    Read more

  • Technology | Hail showers in ASDEX Upgrade for ITER disruption mitigation

    Just before the 2021 Christmas holiday break, the team at the ASDEX Upgrade tokamak successfully fired frozen deuterium pellet fragments into a plasma as part o [...]

    Read more

  • Image of the week | Like a Meccano under the Christmas tree

    Like Erector set or Meccano parts scattered beneath the tree on Christmas morning, components for the ITER Tokamak cover the floor of the Assembly Hall, waiting [...]

    Read more

  • Poloidal field coils | 12 months saved on number two

    Whatever their size or position, the role of the ITER poloidal field coils is to shape and stabilize the plasma inside the vacuum vessel. However, as the plasma [...]

    Read more

  • Divertor dome | Russia delivers a full-scale prototype

    A multiyear qualification program in Russia has concluded with the successful manufacturing and testing of a full-scale divertor dome prototype at the Efremov I [...]

    Read more

Of Interest

See archived entries

Fusion on the micro scale

Artur Golczewski from the Vienna University of Technology mounting the high precision scale. Photo courtesy of the Vienna University of Technology. (Click to view larger version...)
Artur Golczewski from the Vienna University of Technology mounting the high precision scale. Photo courtesy of the Vienna University of Technology.
One of the world's most accurate scales is currently being used for fusion research at the Institute of Applied Physics at the Vienna University of Technology (VUT). A research group led by Professor Aumayr reproduces the physical conditions on the fusion reactor's walls in its experiments. In the laboratory, the interaction between high-energy ions and solid surfaces can be studied much more precisely than it ever could inside an actual fusion reactor.

A key tool for this research is the quartz crystal microbalance, which was developed by Professor Michael Schmid from VUT. A small piece of the surface material, which is supposed to be used in the fusion reactor, is irradiated with high-energy particle beams, and tiny changes of its weight are measured with great accuracy. This way, one can determine whether the particle bombardment knocks atoms out of the surface, reducing the mass of the specimen, or whether the incident particles are instead implanted into the material, thereby increasing its mass.

The vacuum chamber in which the high-precision measurements with the quartz crystal scale are being performed. Photo courtesy of the Vienna University of Technology. (Click to view larger version...)
The vacuum chamber in which the high-precision measurements with the quartz crystal scale are being performed. Photo courtesy of the Vienna University of Technology.
The microscale developed at VUT is one of the world's most accurate scales. "Mass changes of as little as one billionth of a gram can be measured," says Katharina Dobes, research assistant at the Institute of Applied Physics. Even if the particle bombardment only removes one single atomic layer from the surface, the resulting change in mass can still be evaluated.

The fundamental idea behind this incredible precision is rather simple: a quartz crystal is vibrated and its resonance frequency is measured. This frequency depends very sensitively on the crystal's mass. If the crystal surface is coated with the material under investigation and then hit by particles, the changing resonance frequency of the crystal can be translated in a mass change of the material on top of it. That way it is possible to determine the effect the particle bombardment has on the surface.

The application of this measuring device is not restricted to fusion research. "In particle-surface interactions, there are many quantum mechanical phenomena which play a crucial role. In this field, many interesting fundamental questions are yet to be answered," Professor Aumayr believes.


return to the latest published articles