Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Heating | A pinch of moondust in the ITER plasma

    One day in the distant future, fusion plants might be fuelled by helium 3—an isotope that is extremely scarce on Earth but reputed to be abundant on the Moon. B [...]

    Read more

  • Delivery | 2,000 km through canals, locks and tunnels

    When the thruway is closed, one takes the back roads. And when it's low-water season on the Rhine-Rhône canal, a barge leaving Switzerland for the Mediterranean [...]

    Read more

  • Monaco Fellows | A hand in shaping ITER

    For the sixth time, ITER is welcoming a group of five young researchers as part of the Monaco-ITER postdoctoral fellowship scheme. Working alongside experienced [...]

    Read more

  • On site | Drone survey on a perfect day

    There are days in winter when the skies over Provence are perfectly transparent. Snowy peaks 200 kilometres away appear close enough to be touched and farms, co [...]

    Read more

  • AAAS conference | ITER on the world science stage

    With more than 120,000 members globally, the American Association for the Advancement of Science (AAAS) is billed as the world's largest scientific society. The [...]

    Read more

Of Interest

See archived entries

Design concept for cryoplant system approved

Luigi Serio, Cryogenic Section Leader

ITER's impressive cryogenic system. (Click to view larger version...)
ITER's impressive cryogenic system.
The ITER machine will rely on a large and complex cryogenic system comprising the cryoplant, which will produce the required cooling power, and a cryodistribution system which will distribute the coolant. The cryogenic system will guarantee cooling and stable operation for ITER's magnets, its cryopumps and its thermal shields over a wide range of plasma scenarios.

The magnets operate at high magnetic fields to confine and stabilize the plasma and require cooling with supercritical helium at 4 K (-269 deg C). They will be surrounded by a large cylindrical cryostat and an actively-cooled silver-coated thermal shield with a forced flow of helium at 80 K. Large cryosorption panels cooled by 4 K supercritical helium are used to achieve the high pumping rates and vacuum levels.

The design feview panel with representatives from the various interfacing divisions, the Domestic Agencies and the cryogenics team at work during the three-day meeting. (Click to view larger version...)
The design feview panel with representatives from the various interfacing divisions, the Domestic Agencies and the cryogenics team at work during the three-day meeting.
The key design requirement of the ITER cryoplant is to cope with large dynamic heat loads deposited in the magnets due to magnetic field variation and neutron production from deuterium-tritium fusion reaction. At the same time, the system must be able to cope with the regular regeneration of the cryopumps.

Last week a team lead by Hans Quack, professor for Refrigeration and Cryogenics at the Technical University Dresden, Germany, thoroughly reviewed the conceptual design of the cryoplant system. The cryoplant system will be installed in two buildings and an outdoor area. It is composed of helium and nitrogen refrigerators combined with an 80 K helium loop. Storage and recovery of the large helium inventory (24 tonnes) is provided in warm and cold (4 K and 80 K) gaseous helium tanks.

An artist's view of the ITER cryoplant buildings. (Click to view larger version...)
An artist's view of the ITER cryoplant buildings.
Three helium refrigerators supply the required cooling power via an interconnection box providing the interface to the cryodistribution system and redundancy of operation between refrigerators during faulty scenarios. Two nitrogen refrigerators provide cooling power for the thermal shields and the 80 K pre-cooling of the helium refrigerators.

The reviewers could not identify any flaws in the design. The whole review panel was instead impressed of the amount of good work done and encouraged the cryogenics team to continue in the same direction. The approval and recommendation of the cryoplant conceptual design opens therefore the door to the procurement of the largest cryoplant system in the world. The Liquid Nitrogen Facility (LN2) and auxiliary systems will be procured by Europe, the Procurement Arrangement is expected to be signed in December this year. The Liquid Helium (LHe) plants will be directly procured by the ITER Organization with a call for tender issued during the first half of 2011.


return to the latest published articles