Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Test facility | How do electronics react to magnetic fields?

    A tokamak is basically a magnetic cage designed to confine, shape and control the super-hot plasmas that make fusion reactions possible. Inside the ITER Tokamak [...]

    Read more

  • ITER Robots | No two alike

    More than 500 students took part in the latest ITER Robots challenge. Working from the same instructions and technical specifications, they had worked in teams [...]

    Read more

  • Data archiving | Operating in quasi real time

    To accommodate the first real-time system integrated with the ITER control system, new components of the data archiving system have been deployed. Data archivi [...]

    Read more

  • Repairs | Setting the stage for a critical task

    Like in a game of musical chairs—albeit in slow motion and at a massive scale—components in the Assembly Hall are being transferred from one location to another [...]

    Read more

  • Image of the week | There is life on Planet ITER

    Dated April 2023, this new image of the ITER "planet" places the construction site squarely in the middle. One kilometre long, 400 metres wide, the IT [...]

    Read more

Of Interest

See archived entries

Design of ITER's in-vessel coils converging

Two vertical stability coils (orange) provide fast vertical stabilization of the plasma. An array of 27 ELM coils (green and blue) provide a magnetic ''massage'' of the plasma exterior to suppress potentially harmful power deposition on plasma-facing components. (Click to view larger version...)
Two vertical stability coils (orange) provide fast vertical stabilization of the plasma. An array of 27 ELM coils (green and blue) provide a magnetic ''massage'' of the plasma exterior to suppress potentially harmful power deposition on plasma-facing components.
Last week, experts from around the world assembled virtually in Cadarache to conduct a preliminary design review of the ITER in-vessel coils and feeders. Their mission was to evaluate the results from the preliminary design work presented by the in-vessel coil design team. The hard work of the design team lead by the Princeton Plasma Physics Lab (PPPL) paid off with a successful review enabling design and R&D activities to proceed towards an interim review planned for March 2011.

The ITER in-vessel coil system is comprised of two systems: the vertical stability coils and the edge localized mode (ELM) coils. The vertical stability coils are two poloidal field coils located above and below the tokamak's mid-plane. They provide fast vertical stabilization of the plasma. The ELM coils, an array of 27 coils fixed to the wall of the vacuum vessel, provide resonant magnetic perturbations in order to control the plasma so that certain types of plasma instabilities called edge-localized modes are avoided. 

Each in-vessel coil is wound from about 50 metres of conductor consisting of a 59-mm outer diameter stainless steel jacket, an insulating layer of magnesium oxide and an inner copper conductor. Magnesium oxide is chosen for its ability to withstand the harsh radiation environment within the Tokamak. In total, the in-vessel coils require more than 4 km of mineral-insulated conductors. (Click to view larger version...)
Each in-vessel coil is wound from about 50 metres of conductor consisting of a 59-mm outer diameter stainless steel jacket, an insulating layer of magnesium oxide and an inner copper conductor. Magnesium oxide is chosen for its ability to withstand the harsh radiation environment within the Tokamak. In total, the in-vessel coils require more than 4 km of mineral-insulated conductors.
The control functions provided by these two coil systems are part of the overall plasma control system that ensures and maintains stable plasma operations. Two vertical stability coils (marked orange) provide fast vertical stabilization of the plasma. An array of 27 ELM coils (green & blue) provide a magnetic "massage" of the plasma exterior to suppress potentially harmful power deposition on plasma-facing components.

The masterminds behind the in-vessel coils at the Princeton Plasma Physics Lab. (Click to view larger version...)
The masterminds behind the in-vessel coils at the Princeton Plasma Physics Lab.
Each in-vessel coil is wound from about 50 metres of conductor consisting of a 59-mm outer diameter stainless steel jacket, an insulating layer of magnesium oxide and an inner copper conductor. Magnesium oxide is chosen for its ability to withstand the harsh radiation environment within the ITER Tokamak. Water will flow through the central hole to remove power deposited from resistive and neutron heating. In total, the in-vessel coils require more than four kilometres of mineral-insulated conductors.

 
Click here to learn more about ELMs and how to control them
 
Clikc here to find out why not all ELMs are trees.


return to the latest published articles