Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Fusion supply chain | A glimpse into the future for commercial fusion reactors

    Most of the USD 7 billion in investment in private fusion initiatives has gone to companies that are building devices from the ground up. But recently, another [...]

    Read more

  • Outreach | ITER @ October science festivals

    Every October, before schools pause for two weeks of holiday, towns and cities in France open their municipal spaces to scientific experts of all stripes who ar [...]

    Read more

  • Image of the week | ITER Director-General visits Russia

    The ITER Director-General was in Russia last week, meeting with stakeholders and holding technical meetings with colleagues in Moscow and Saint Petersburg. As [...]

    Read more

  • Image of the Week | Sector 5 is on its way

    The first vacuum vessel sector produced in Europe travelled last week between Monfalcone, Italy, and the French port of Fos-sur-Mer. The 440-tonne component had [...]

    Read more

  • Anniversary | ITER Document Management system turns 20

    Whatever its nature, every large project generates huge numbers of documents. And when project collaborators operate from different countries, as was the case f [...]

    Read more

Of Interest

See archived entries

Design of ITER's in-vessel coils converging

Two vertical stability coils (orange) provide fast vertical stabilization of the plasma. An array of 27 ELM coils (green and blue) provide a magnetic ''massage'' of the plasma exterior to suppress potentially harmful power deposition on plasma-facing components. (Click to view larger version...)
Two vertical stability coils (orange) provide fast vertical stabilization of the plasma. An array of 27 ELM coils (green and blue) provide a magnetic ''massage'' of the plasma exterior to suppress potentially harmful power deposition on plasma-facing components.
Last week, experts from around the world assembled virtually in Cadarache to conduct a preliminary design review of the ITER in-vessel coils and feeders. Their mission was to evaluate the results from the preliminary design work presented by the in-vessel coil design team. The hard work of the design team lead by the Princeton Plasma Physics Lab (PPPL) paid off with a successful review enabling design and R&D activities to proceed towards an interim review planned for March 2011.

The ITER in-vessel coil system is comprised of two systems: the vertical stability coils and the edge localized mode (ELM) coils. The vertical stability coils are two poloidal field coils located above and below the tokamak's mid-plane. They provide fast vertical stabilization of the plasma. The ELM coils, an array of 27 coils fixed to the wall of the vacuum vessel, provide resonant magnetic perturbations in order to control the plasma so that certain types of plasma instabilities called edge-localized modes are avoided. 

Each in-vessel coil is wound from about 50 metres of conductor consisting of a 59-mm outer diameter stainless steel jacket, an insulating layer of magnesium oxide and an inner copper conductor. Magnesium oxide is chosen for its ability to withstand the harsh radiation environment within the Tokamak. In total, the in-vessel coils require more than 4 km of mineral-insulated conductors. (Click to view larger version...)
Each in-vessel coil is wound from about 50 metres of conductor consisting of a 59-mm outer diameter stainless steel jacket, an insulating layer of magnesium oxide and an inner copper conductor. Magnesium oxide is chosen for its ability to withstand the harsh radiation environment within the Tokamak. In total, the in-vessel coils require more than 4 km of mineral-insulated conductors.
The control functions provided by these two coil systems are part of the overall plasma control system that ensures and maintains stable plasma operations. Two vertical stability coils (marked orange) provide fast vertical stabilization of the plasma. An array of 27 ELM coils (green & blue) provide a magnetic "massage" of the plasma exterior to suppress potentially harmful power deposition on plasma-facing components.

The masterminds behind the in-vessel coils at the Princeton Plasma Physics Lab. (Click to view larger version...)
The masterminds behind the in-vessel coils at the Princeton Plasma Physics Lab.
Each in-vessel coil is wound from about 50 metres of conductor consisting of a 59-mm outer diameter stainless steel jacket, an insulating layer of magnesium oxide and an inner copper conductor. Magnesium oxide is chosen for its ability to withstand the harsh radiation environment within the ITER Tokamak. Water will flow through the central hole to remove power deposited from resistive and neutron heating. In total, the in-vessel coils require more than four kilometres of mineral-insulated conductors.

 
Click here to learn more about ELMs and how to control them
 
Clikc here to find out why not all ELMs are trees.


return to the latest published articles