Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • ITER DNA | A "case" study...

    In December last year, and again this year in early May, pre-welding fitting tests demonstrated that steel components as tall as a four-storey building (and wei [...]

    Read more

  • First plasma| Temporary in-vessel protection

    The vacuum vessel, the operating theatre of the ITER machine, needs to be protected against possible damage from the hot plasma at any given time during its ope [...]

    Read more

  • Divertor cassettes | Successful prototypes open way to series

    Before embarking on the fabrication of the 54 complex steel structures that will form a ring at the bottom of the ITER machine—the divertor cassettes—the Europe [...]

    Read more

  • Images of the week | Titan tool 90 percent complete

    Towering 22 metres above ground and weighing approximately 800 tonnes, the twin sector sub-assembly tools (SSAT) are formidable handling machines that will be u [...]

    Read more

  • Video | How does the ITER cryoplant work?

    Cold is essential to ITER—10,000 tonnes of superconducting magnets, the thermal shield that surrounds the machine, the cryopumps that achieve the high vacuum in [...]

    Read more

Of Interest

See archived articles

US and India confer on cooling water system

Warren Curd, Cooling Water Section Leader

The international cooling water team last week in Cadarache. (Click to view larger version...)
The international cooling water team last week in Cadarache.
The ITER cooling water system is all cool. Last week, representatives from the two procuring parties—the US ITER Project Office and ITER India—plus their contractors A/E Areva FS and consultants from Nuclear Power Corporation India Limited and Engineers India Limited, as well as staff from the ITER Cooling Water Section—moved the project a big step forward. In a series of meetings, US-ITER reconciled their component delivery dates with the need dates given in the ITER assembly schedule and further developed the optimization of shop fabrication and field assembly requirements.

The focus of the meetings with ITER India was the optimization of the design of the heat rejection system and the component cooling water system. This optimization focused on the size and number of cooling towers, water basin size, and size and number of heat exchangers. Also included in these discussions were the instrumentation and controls for the Indian scope of supply.

To learn more about ITER's cooling water system click here...


return to the latest published articles