Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Vacuum vessel | First segment completed in Korea

    The technically challenging fabrication of the ITER vacuum vessel is progressing in Korea, where Hyundai Heavy Industries has completed the first poloidal segme [...]

    Read more

  • Project progress | How do we know where we stand?

    If ITER were an ordinary project, like the building of a bridge, the construction of a highway or even the launching of a satellite into space, it would be rela [...]

    Read more

  • Radial walls| Thickest rebar and most intricate geometry

    The combined mass of the ITER Tokamak and its enveloping cryostat is equivalent to that of three Eiffel Towers. But not only is it heavy (23,000 tonnes) ... it [...]

    Read more

  • Next step | Japan revises its DEMO strategy

    In light of recent progress on the construction of ITER and developments in domestic fusion research, the Science and Technology Committee on Fusion Energy—part [...]

    Read more

  • Monaco-ITER Fellows | Campaign opens for the 6th generation

    The ink has only just dried on the second Monaco-ITER Partnership Arrangement. Funded by the Principality of Monaco, the Arrangement allows the ITER Organizatio [...]

    Read more

Of Interest

See archived articles

Review affirms robust design of ITER's cryolines

Sabina Griffith

Natural (-10 °C) and artificial (-269 °C) cooling: the international review panel in action last week. (Click to view larger version...)
Natural (-10 °C) and artificial (-269 °C) cooling: the international review panel in action last week.
The fact that inside a fusion device it gets hotter than in the core of the sun leaves Hans Quack pretty cold. "Fusion is in fact 40 percent cryogenics," he says, and—being a professor for refrigeration and cryogenics at the University of Dresden—he knows.

At JET, cryogenics was already used for the vacuum cryopanels and for the handling of the fuel. The next step—using cryogenic refrigeration for the superconducting magnets—was pioneered at EAST, KSTAR and Wendelstein. But the ITER cryogenic system is an order of magnitude larger and much more complex than what has been built before, and is only comparable to the cryogenic system of the LHC at CERN.

The ITER machine will rely on a cryoplant, which will produce the required cooling power, and a cryo-distribution system to distribute the helium coolant to ITER's high-field magnets, cryopumps and thermal shields. "Cryolines will be crossing into the reactor," says Hans Quack "a situation that you don't have in a fission device."

This complex and sophisticated system of cryogenic transfer lines and manifolds was the subject of discussion at the ITER Headquarters last week during the conceptual design review of ITER's cryolines that was chaired by Hans Quack, and that brought together many international experts. "The very good level of preparation was recognized by the reviewers," said Luigi Serio, Responsible Officer for ITER's cryosystem, summarizing the review. "We are now sure that we have a robust design and that we can proceed with procurement of the cryolines for ITER."

The Procurement Arrangement is expected to be signed at the end of this month.


return to the latest published articles