Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Fusion world | Innovative approaches and how ITER can help

    More than 30 private fusion companies from around the world attended ITER's inaugural Private Sector Fusion Workshop in May 2024. Four of them participated in a [...]

    Read more

  • Robert Aymar (1936-2024) | A vision turned into reality

    Robert Aymar, who played a key role in the development of fusion research in France and worldwide, and who headed the ITER project for 10 years (1993-2003) befo [...]

    Read more

  • The ITER community | United in a common goal

    Gathered on the ITER platform for a group photo (the first one since 2019, in pre-Covid times) the crowd looks impressive. Although several hundred strong, it r [...]

    Read more

  • Vacuum vessel | Europe completes first of five sectors

    The ITER assembly teams are gearing up to receive a 440-tonne machine component shipped from Italy—sector #5, the first of five vacuum vessel sectors expected f [...]

    Read more

  • SOFT 2024 | Dublin conference highlights progress and outstanding challenges

    Nestled in the residential suburb of Glasnevin, Dublin City University is a fairly young academic institution. When it opened its doors in 1980 it had just 200 [...]

    Read more

Of Interest

See archived entries

Review affirms robust design of ITER's cryolines

Natural (-10 °C) and artificial (-269 °C) cooling: the international review panel in action last week. (Click to view larger version...)
Natural (-10 °C) and artificial (-269 °C) cooling: the international review panel in action last week.
The fact that inside a fusion device it gets hotter than in the core of the sun leaves Hans Quack pretty cold. "Fusion is in fact 40 percent cryogenics," he says, and—being a professor for refrigeration and cryogenics at the University of Dresden—he knows.

At JET, cryogenics was already used for the vacuum cryopanels and for the handling of the fuel. The next step—using cryogenic refrigeration for the superconducting magnets—was pioneered at EAST, KSTAR and Wendelstein. But the ITER cryogenic system is an order of magnitude larger and much more complex than what has been built before, and is only comparable to the cryogenic system of the LHC at CERN.

The ITER machine will rely on a cryoplant, which will produce the required cooling power, and a cryo-distribution system to distribute the helium coolant to ITER's high-field magnets, cryopumps and thermal shields. "Cryolines will be crossing into the reactor," says Hans Quack "a situation that you don't have in a fission device."

This complex and sophisticated system of cryogenic transfer lines and manifolds was the subject of discussion at the ITER Headquarters last week during the conceptual design review of ITER's cryolines that was chaired by Hans Quack, and that brought together many international experts. "The very good level of preparation was recognized by the reviewers," said Luigi Serio, Responsible Officer for ITER's cryosystem, summarizing the review. "We are now sure that we have a robust design and that we can proceed with procurement of the cryolines for ITER."

The Procurement Arrangement is expected to be signed at the end of this month.


return to the latest published articles