Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Making remote handling less remote

    Over a wet and windy three-day period on the ITER site in November, around 90 representatives of the ITER Organization, the Domestic Agencies of Europe and Japa [...]

    Read more

  • The framework for sharing ITER intellectual property

    In signing the ITER Agreement in 2006, the seven ITER Members were agreeing not only to share in the costs of constructing and operating the ITER facility, but [...]

    Read more

  • Wendelstein achieves ultra-precise magnetic topology

    A recent article in the online journal Nature Communications confirms that the complex topology of the magnetic field of Wendelstein 7-X—the world's largest ste [...]

    Read more

  • The Matrix, rigid and fluid

    A fast-growing array of structures and buildings has been emerging across the ITER worksite platform under the control and supervision of the European Domestic [...]

    Read more

  • By road, river and sea

    They travelled by road from the Air Liquide factory near Grenoble, sailed down the Rhône River from Lyon and entered the Mediterranean to the east of Fos-sur-Me [...]

    Read more

Of Interest

See archived articles

A tall accomplishment

-Krista Dulon

12 metres high: the ITER Korea team stands before the full-scale mock-up of the 10° VVTS inboard section, completed in 2010. (Click to view larger version...)
12 metres high: the ITER Korea team stands before the full-scale mock-up of the 10° VVTS inboard section, completed in 2010.
Some of the manufacturing processes tested during fabrication of the mock-up. (Click to view larger version...)
Some of the manufacturing processes tested during fabrication of the mock-up.
The Korean Domestic Agency, in cooperation with Daebong Acrotec, has completed a full-scale mock-up of a 10° inboard section of the ITER Thermal Shield, and tested the main procedures of fabrication including cutting, bending, forming, buffing, welding, and machining.

"We are pleased to report that all the processes for thermal shield manufacture were demonstrated, with the exception of last-stage silver coating," said Wooho Chung, Technical Responsible Officer. "The fabrication of the mock-up allowed us to validate the design and manufacturing process for the ITER Thermal Shield."

Inserted between toroidal field magnets and the vacuum vessel, the ITER Thermal Shield (TS) system minimizes the thermal radiation to the superconducting magnets. Made of stainless steel panels coated with low-emissivity silver, connecting joints (flanges) and cooling pipes welded to the panels, the TS is operated within the range of 80-100 K during plasma operation. The TS surface area covers 10,000 square metres; once assembled, it will stand 25 metres at its highest point.

Two TS segments — the outboard segment and the inboard segment - will be manufactured separately by Korea and then assembled to form a full torus shape. As an open structure, each segment is susceptible to distortion caused by cutting, machining or welding. "It is very important to validate all design and requirement parameters before beginning fabrication," stresses Chung. "The tolerance requirements for the joints in particular are very strict."

During the fabrication of the 10° inboard section mock-up, each step of the manufacturing process was validated. Panel thickness and distortion were measured after the bending and forming stages; all welds were successfully verified; and the machining processes were tested. One important finding from the mock-up fabrication was that the inboard segment is more flexible than expected, making the handling jig essential during fabrication. However, the structural flexibility of individual segment is beneficial for the assembly of the 40° sector.

"We now plan to make another mock-up - the TS outboard 10° section - which will be assembled with the inboard section," says Chung. "These mock-ups will be used in the test of silver electroplating processes."

The detailed design of the ITER Thermal Shield will be reviewed in 2011. The beginning of fabrication is expected in early 2012.


return to the latest published articles