Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • ITER DNA | A "case" study...

    In December last year, and again this year in early May, pre-welding fitting tests demonstrated that steel components as tall as a four-storey building (and wei [...]

    Read more

  • First plasma| Temporary in-vessel protection

    The vacuum vessel, the operating theatre of the ITER machine, needs to be protected against possible damage from the hot plasma at any given time during its ope [...]

    Read more

  • Divertor cassettes | Successful prototypes open way to series

    Before embarking on the fabrication of the 54 complex steel structures that will form a ring at the bottom of the ITER machine—the divertor cassettes—the Europe [...]

    Read more

  • Images of the week | Titan tool 90 percent complete

    Towering 22 metres above ground and weighing approximately 800 tonnes, the twin sector sub-assembly tools (SSAT) are formidable handling machines that will be u [...]

    Read more

  • Video | How does the ITER cryoplant work?

    Cold is essential to ITER—10,000 tonnes of superconducting magnets, the thermal shield that surrounds the machine, the cryopumps that achieve the high vacuum in [...]

    Read more

Of Interest

See archived articles

HTS workshop for future fusion applications

Sabina Griffith

 (Click to view larger version...)
In order to achieve superconductivity, the niobium-titanium (NbTi) and niobium-tin (Nb3Sn) conductors inside ITER's magnets will have to be cooled down with supercritical helium in the temperature range of 4 Kelvin (-269°C)—a process that requires substantial amounts of energy that impact the net energy gain. The efficiency of future fusion power plants could be drastically increased if superconductors could be operated at higher temperatures (> 65 K) using affordable liquid nitrogen, for example, instead of supercritical helium as coolant.

"Targeting a future commercial fusion machine, it may be very demanding to avoid liquid helium cooling for the coil system," Walter Fietz from the Karlsruhe Institute of Technology (KIT) in Germany writes in an article for Fusion Engineering and Design. "This would require less refrigeration power and allow omitting the radiation shield of the coils, resulting in a less complex cryostat and a size reduction of the machine."  

"Having a material at hand that can transport currents without losses, that would be a dream," says Jean-Luc Duchateau from CEA who developed the superconducting tokamak Tore Supra. There are many materials being tested in labs around the world. At KIT in Karlsruhe, scientists have been experimenting for many years with a material that holds all the promises for successful application in the harsh environment of a fusion reactor: Yttrium Barium Copper Oxide, a crystalline chemical compound abbreviated as "YBCO". The material's operating temperature is in the range of around 50 K and its physical behavior in high magnetic fields brings it very close to Jean-Luc Duchateau's dream come true. The downside, however, is that so far it has not been possible to produce reliable strands out of YBCO.
 
In order to coordinate international efforts, a workshop is being organized at KIT on 26-27 May to further investigate options of HTS for high current and high fields for DEMO and future fusion applications. The workshop's flyer can be downloaded here .


return to the latest published articles