Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Open Doors Day | An intense and unforgettable experience

    Saturday was Jacques's birthday. At age 90, the long-retired engineer from Aix-en-Provence had only one item on his wish list: to visit ITER for a third time an [...]

    Read more

  • Power conversion | A potent illustration of the "One ITER" spirit

    Europe made the buildings; the piping came from India; China and Korea provided the transformers; Russia manufactured the massive 'busbar' network. The ITER Org [...]

    Read more

  • Fusion world | Upgrade completed on DIII-D tokamak

    The DIII-D National Fusion Program (US) has completed a series of important enhancements to its fusion facility, providing researchers with several first-of-a-k [...]

    Read more

  • Vacuum lab | Ensuring leak test sensitivity

    A helium leak test is one of several factory acceptance tests planned for the sectors of the ITER vacuum vessel before they are shipped to ITER. In a vacuum lab [...]

    Read more

  • Bookmark | The Future of Fusion Energy

    To write about fusion is to walk a fine line between the temptation of lyricism and the arid demands of scientific accuracy. Whereas the general media tends to [...]

    Read more

Of Interest

See archived entries

HTS workshop for future fusion applications

Sabina Griffith

 (Click to view larger version...)
In order to achieve superconductivity, the niobium-titanium (NbTi) and niobium-tin (Nb3Sn) conductors inside ITER's magnets will have to be cooled down with supercritical helium in the temperature range of 4 Kelvin (-269°C)—a process that requires substantial amounts of energy that impact the net energy gain. The efficiency of future fusion power plants could be drastically increased if superconductors could be operated at higher temperatures (> 65 K) using affordable liquid nitrogen, for example, instead of supercritical helium as coolant.

"Targeting a future commercial fusion machine, it may be very demanding to avoid liquid helium cooling for the coil system," Walter Fietz from the Karlsruhe Institute of Technology (KIT) in Germany writes in an article for Fusion Engineering and Design. "This would require less refrigeration power and allow omitting the radiation shield of the coils, resulting in a less complex cryostat and a size reduction of the machine."  

"Having a material at hand that can transport currents without losses, that would be a dream," says Jean-Luc Duchateau from CEA who developed the superconducting tokamak Tore Supra. There are many materials being tested in labs around the world. At KIT in Karlsruhe, scientists have been experimenting for many years with a material that holds all the promises for successful application in the harsh environment of a fusion reactor: Yttrium Barium Copper Oxide, a crystalline chemical compound abbreviated as "YBCO". The material's operating temperature is in the range of around 50 K and its physical behavior in high magnetic fields brings it very close to Jean-Luc Duchateau's dream come true. The downside, however, is that so far it has not been possible to produce reliable strands out of YBCO.
 
In order to coordinate international efforts, a workshop is being organized at KIT on 26-27 May to further investigate options of HTS for high current and high fields for DEMO and future fusion applications. The workshop's flyer can be downloaded here .


return to the latest published articles