Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Cryolines | Another day, another spool

    Having wedged his body and equipment into the cramped space between the ceiling and the massive pipe, a worker is busy welding two cryolines spools. A few metre [...]

    Read more

  • Image of the week | Bearings unveiled

    The construction teams are in the last stages of preparing the Tokamak pit for the first major operation of ITER machine assembly: the lowering of the cryostat [...]

    Read more

  • Technology | Perfecting tritium breeding for DEMO and beyond

    While ITER will never breed tritium for its own consumption, it will test breeding blanket concepts—the tools and techniques that designers of future DEMO react [...]

    Read more

  • Fusion world | Japan and Europe complete the assembly of JT-60SA

    The JT-60SA fusion experiment in Naka, Japan, is designed to explore advanced plasma physics in support of the operation of ITER and next-phase devices. After s [...]

    Read more

  • Manufacturing | Thermal shield milestone in Korea

    Six years after the start of fabrication, Korean contractor SFA has completed the last 40° sector of vacuum vessel thermal shield. The stainless steel panels, c [...]

    Read more

Of Interest

See archived entries

The fellowship of the composite rings

Juan Knaster, ITER Magnet Division

At the Italian laboratory ENEA, Juan assesses the failure mode of one of the ten mock-up rings tested to rupture. (Click to view larger version...)
At the Italian laboratory ENEA, Juan assesses the failure mode of one of the ten mock-up rings tested to rupture.
The pre-compression rings will be one of the most challenging composite structures ever manufactured. Weighing more than 3 tonnes each, they will tightly hold the ITER toroidal field coils from the top and bottom with a radial load of 7,000 tonnes per coil and withstanding hoop stress of 350 MPa per ring.

Ten years of successful R&D performed by the Italian laboratory ENEA near Frascati, under Task Agreements with the European Fusion Development Agency (EFDA), the European Domestic Agency, and direct contracts with the ITER Organization, have recently been brought to a close. The work performed at ENEA by the team of Paolo Rossi identified two suitable fabrication processes for the rings, and developed applicable non-destructive examination methods by x-ray and ultrasound. The Italian team further completed the full mechanical characterization of the glass-fibre/epoxy composite at room and operating temperatures, allowing a final optimization of the ring design, and determined the ultimate tensile stress (UTS) of six mock-up rings (in average over 1500 MPa) in a purpose-designed machine that, with 18 independent hydraulic pullers, simulates the configuration of the 18 toroidal field coils (see related article).

The last challenge was to achieve the prediction of the long-term performance of the mock-up rings: this challenge has also been met. Tests on specimens at different constant loads during long periods had allowed the definition of the creep behaviour, however the correlation with long-term tests on the mock-up rings was pending. Early last year a ring was loaded at 950 MPa (65 percent of UTS) with no measurable degradation rate after 210 days maintained at such stress. A new ring was loaded last month at 1100 MPa (77 percent of UTS) and maintained under constant load until rupturing after 140 hours, right between the breaking times of two specimens loaded equivalently.

This accomplishment occurred concurrently with the end of the European Domestic Agency call for tender for the pre-compression rings. It enables our Division to wrap up the technical understanding of the rings' performance before industry enters in the game. The expertise and the purpose-design equipment available at ENEA will continue to play an essential role for industry in the years to come.


return to the latest published articles