Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Worksite | First pillars for the crane hall

    For the overhead cranes to deliver machine components into the Tokamak assembly pit, the rails that carry them need to be extended some 80 metres beyond the tem [...]

    Read more

  • Transport | 300 tonnes of equipment on its way to ITER

    A specially designed assembly tool and elements of the cryostat and vacuum vessel thermal shields are part of the shipments travelling now from Korea to ITER. W [...]

    Read more

  • Fusion world | A new tokamak in town

    After EAST in China and WEST in France, another of the cardinal points of the compass has been chosen to name a tokamak. Introducing NORTH—the NORdic Tokamak de [...]

    Read more

  • Opportunities | Bringing the ITER Business Forum to Washington

    Every second year, a two-day ITER Business Forum is held to invite existing and potential suppliers for the ITER Project—laboratories, universities, and compani [...]

    Read more

  • World Energy Congress | Fusion "at a time of transition"

    In the United Arab Emirates, Abu Dhabi is often referred to as a tourism hotspot that combines luxury and ancient traditions. In September, Abu Dhabi was in the [...]

    Read more

Of Interest

See archived entries

New conductor developed for ITER's in-vessel coils

Sabina Griffith

A comparison of the ITER Design Point and the actual size of the near-scale conductors provided by ASIPP and Tyco. This conductor, the largest of its kind ever, consists of a stainless steel jacket, magnesium oxide insulation, copper alloy to conduct current and a water-cooling channel in the centre. (Click to view larger version...)
A comparison of the ITER Design Point and the actual size of the near-scale conductors provided by ASIPP and Tyco. This conductor, the largest of its kind ever, consists of a stainless steel jacket, magnesium oxide insulation, copper alloy to conduct current and a water-cooling channel in the centre.
The question of how to improve control of edge localized modes (ELMs) and the vertical stability of the ITER plasma will be one of the key issues addressed in next week's meeting of the ITER Science and Technology Advisory Committee (STAC). And there will be good news to discuss. In the six short months since the Preliminary Design Review performed in October last year, the in-vessel coil design team led by the Princeton Plasma Physics Laboratory (PPPL) worked with two suppliers from Canada and China to fabricate the largest stainless sheath mineral insulated conductor (SSMIC) ever produced in the world.  

ASIPP and Tyco conductor samples, 100 mm long. Once received at PPPL, the prototypes were cut, pushed, pulled, bent, heated, electrified, sliced and x-rayed to evaluate their mechanical and electrical properties. (Click to view larger version...)
ASIPP and Tyco conductor samples, 100 mm long. Once received at PPPL, the prototypes were cut, pushed, pulled, bent, heated, electrified, sliced and x-rayed to evaluate their mechanical and electrical properties.
"Because of their proximity to the plasma, conductors with conventional insulation schemes were not an option for the in-vessel coils," says Edward Daly, the mechanical engineer who led the design efforts. The team therefore decided to choose SSMIC for its ability to withstand ITER's high radiation and bake-out temperatures of 200 °C.

The sheer scale required for the ELM and vertical stability coils in ITER, however, is much larger than anything produced previously. In June, contracts were awarded to the Institute of Plasma Physics at the Chinese Academy of Science (ASIPP) based in Hefei, China and to Tyco Thermal Controls, Ltd in Ontario, Canada, who both developed prototypes within four months. Once received at PPPL, the prototypes were cut, pushed, pulled, bent, heated, electrified, sliced and x-rayed to evaluate their mechanical and electrical properties.

"In general, the conductor samples performed as we had hoped and expected," says Ed Daly. "There were no show-stoppers, but there is still work to do." The results will be used in the final design and prototyping phase, planned to start in July. ASIPP has expressed interest in manufacturing these coils and has proposed collaboration with PPPL.

ITER's in-vessel coils—another example of world-spanning cooperation.


return to the latest published articles