Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Neighbours | In goes the antenna

    Just a short distance from the ITER site, the Institute for Magnetic Fusion Research (IRFM) is modifying the Tore Supra plasma facility which, once transformed, [...]

    Read more

  • Remote handling | Off-site test facility for design evaluation

    Through a technical collaboration established between the ITER Organization and the UK Atomic Energy Authority (UKAEA) in 2017, the UKAEA's centre for Remote Ap [...]

    Read more

  • Poloidal field coils | A tailor-made ring

    They work like tailors, carefully taking measurements and cutting immaculate fabric with large pairs of scissors. But they're not making a white three-piece sui [...]

    Read more

  • Fusion world | Record results at KSTAR

    Experiments in the Korean tokamakKSTAR in 2017 achieved record-length periods of ELM suppression by the application of three-dimensional magnetic fields with in [...]

    Read more

  • JT-60 SA| Cryostat ready for Europe-Japan tokamak

    The cryostat vessel body of the JT-60SA tokamakhas been successfully manufactured and pre-assembled at a factory in Spain, and will soon be transferred to the J [...]

    Read more

Of Interest

See archived articles

Cryodistribution passes review

Hyun-Sik Chang, Cryogenic Distribution Engineer

The fourth and last CDR of the ITER cryogenic system—cryodistribution—was conducted on 20-21 July. (Click to view larger version...)
The fourth and last CDR of the ITER cryogenic system—cryodistribution—was conducted on 20-21 July.
The fourth and last Conceptual Design Review (CDR) for the ITER cryogenic system was held this week. The CDR for cryodistribution was conducted during 20-21 July, successfully meeting all requirements.
 
The main function of the ITER cryogenic system is to cool down and maintain the required cryogenic operating conditions of the ITER cold components such as the magnets, the cryopumps and the in-tokamak thermal shields. The cryoplant on the ITER platform will produce the required cooling power at the three required operating temperature levels, namely at 4 K, 50 K, and 80 K.
 
The distribution of cooling power will be accomplished through a set of cryodistribution cold boxes, which control the cooling power into the ITER cold components by forced flow.
 
A unique feature of ITER cryodistribution is the mass flow rate of the cold rotating machines: the machines will have a mass flow rate that ranges up to 3 kg/s whereas existing limits are around 1 kg/sec. Such high flow rates are necessary to satisfy the cooling requirements of the ITER superconducting magnet system ... another unique system in many ways.
 
With the successful conclusion of the cryodistribution CDR, the conceptual design of ITER's cryogenic system is now completed and the way paved for the construction of the world's second largest cryogenic facility (following CERN).



return to the latest published articles