Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • ITER DNA | A "case" study...

    In December last year, and again this year in early May, pre-welding fitting tests demonstrated that steel components as tall as a four-storey building (and wei [...]

    Read more

  • First plasma| Temporary in-vessel protection

    The vacuum vessel, the operating theatre of the ITER machine, needs to be protected against possible damage from the hot plasma at any given time during its ope [...]

    Read more

  • Divertor cassettes | Successful prototypes open way to series

    Before embarking on the fabrication of the 54 complex steel structures that will form a ring at the bottom of the ITER machine—the divertor cassettes—the Europe [...]

    Read more

  • Images of the week | Titan tool 90 percent complete

    Towering 22 metres above ground and weighing approximately 800 tonnes, the twin sector sub-assembly tools (SSAT) are formidable handling machines that will be u [...]

    Read more

  • Video | How does the ITER cryoplant work?

    Cold is essential to ITER—10,000 tonnes of superconducting magnets, the thermal shield that surrounds the machine, the cryopumps that achieve the high vacuum in [...]

    Read more

Of Interest

See archived articles

Cryodistribution passes review

Hyun-Sik Chang, Cryogenic Distribution Engineer

The fourth and last CDR of the ITER cryogenic system—cryodistribution—was conducted on 20-21 July. (Click to view larger version...)
The fourth and last CDR of the ITER cryogenic system—cryodistribution—was conducted on 20-21 July.
The fourth and last Conceptual Design Review (CDR) for the ITER cryogenic system was held this week. The CDR for cryodistribution was conducted during 20-21 July, successfully meeting all requirements.
 
The main function of the ITER cryogenic system is to cool down and maintain the required cryogenic operating conditions of the ITER cold components such as the magnets, the cryopumps and the in-tokamak thermal shields. The cryoplant on the ITER platform will produce the required cooling power at the three required operating temperature levels, namely at 4 K, 50 K, and 80 K.
 
The distribution of cooling power will be accomplished through a set of cryodistribution cold boxes, which control the cooling power into the ITER cold components by forced flow.
 
A unique feature of ITER cryodistribution is the mass flow rate of the cold rotating machines: the machines will have a mass flow rate that ranges up to 3 kg/s whereas existing limits are around 1 kg/sec. Such high flow rates are necessary to satisfy the cooling requirements of the ITER superconducting magnet system ... another unique system in many ways.
 
With the successful conclusion of the cryodistribution CDR, the conceptual design of ITER's cryogenic system is now completed and the way paved for the construction of the world's second largest cryogenic facility (following CERN).



return to the latest published articles