Le système magnétique d'ITER sera le plus grand et le plus intégré au monde.
Dans le tokamak ITER, 10 000 tonnes de systèmes supraconducteurs (dont l'énergie magnétique totale est de 51 Gigajoules) généreront le champ magnétique qui créera, confinera et modèlera le plasma. Fabriqués en niobium-étain (Nb3Sn) ou niobium-titane (Nb-Ti), les électroaimants deviennent supraconducteurs lorsqu'ils sont refroidis à très basse température. La température de fonctionnement pour les aimants d'ITER est de -269 °C (4K).
La supraconductivité présente de nombreux avantages. Des aimants supraconducteurs peuvent transporter plus de courant et donc générer des champs magnétiques plus puissants que des aimants conventionnels. Ils consomment également beaucoup moins d'électricité, ce qui les rendent moins chers à faire fonctionner. Les performances que l'on attend d'ITER ne seraient tout simplement pas envisageables sans recours à la supraconductivité.
Des « câbles en conduit » (CICC), dotés d'un circuit de refroidissement interne et formés de brins d'alliage supraconducteur et de cuivre enserrés dans une gaine d'acier, constituent les éléments de base du système magnétique.
Pour l'alliage qui présente les plus grandes difficultés technologiques—niobium-étain (Nb3Sn), destinés aux bobines de champ toroïdal et au solénoïde central—neuf fournisseurs ont assuré la production des quelque 500 tonnes de brins. Cet effort industriel à très grande échelle s'est traduit par une augmentation de la production mondiale annuelle (de 15 à 100 tonnes) et fait émerger trois nouveaux fournisseurs sur le marché international.