Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Rendezvous | D and T to meet at JET in 2020

    In 2020, for the first time in more than 20 years, a reaction that only occurs in the core of the stars will be produced on Earth in a man-made machine. In the [...]

    Read more

  • On site | MOMENTUM believes in recent graduates

    It is rare for students to leave university and immediately begin work on a globally significant project. But thanks to the graduate program run by the project' [...]

    Read more

  • Tokamak Pit | Big steel elbow in place

    A cryostat feedthrough delivered by the Chinese Domestic Agency has become the first metal component of the machine to be installed in the Tokamak Pit, in an op [...]

    Read more

  • Neutral beam source | Europe awards EUR 20 million contract

    The contract, awarded to ALSYOM-SEIV (ALCEN group, France), launches the manufacturing phase for the beam source that will come on line in 2022 as part of the f [...]

    Read more

  • Image of the week | US Under Secretary of Science tours site

    Five months, almost to the day, after the US Secretary of Energy Rick Perry visited ITER, his deputy, Under Secretary for Science Paul Dabbar, stood by the same [...]

    Read more

Of Interest

See archived entries

New fusion material tested on nanoscale

The image shows disperse yttrium oxide (Y2O3) nanoparticles in ODS/Fe12Cr steel. Copyright: Universidad Carlos III de Madrid. (Click to view larger version...)
The image shows disperse yttrium oxide (Y2O3) nanoparticles in ODS/Fe12Cr steel. Copyright: Universidad Carlos III de Madrid.
The success of the fusion endeavor will crucially depend on the development of new materials capable of withstanding the harsh conditions inside a fusion reactor. The high temperature resulting from the fusion reactions together with neutron fluences of up to 200 displacements per atom (dpa) during the estimated lifetime of a reactor could give rise to hardening, swelling and microstructural changes and could thus significantly degrade the structural components of a fusion device.

Reduced activation ferrite steels strengthened by a dispersion of oxide nanoparticles are considered viable candidates for fusion applications. However, the microstructural stability and mechanical behavior of these steels when subjected to the aggressive operating conditions for an extended period of time is so far uncertain. That is why scientists at Universidad Carlos III de Madrid (UC3M), Oxford University (United Kingdom) and the University of Michigan (USA) have now joined their efforts in order to better understand the steels' atomic scale evolution under high temperature and irradiation conditions. "Until recently, studies on the microstructure of these steels have been on a micrometric scale," says Vanessa de Castro from Madrid University's Physics Department. "However, the nanometric scale is more relevant in understanding the phenomena that occur under irradiation."

In a recent paper published in Materials Science and Technology the consortium reports about the first results after having added nanometric particles to the steels which seem to help improve the mechanical properties and increase the steel's resistance. 

Click here to read the press release issued by the Universidad Carlos III de Madrid.


return to the latest published articles