Enable Recite

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Construction | Art around every corner

    Most of us have experienced it. Turning a corner in one of the Tokamak Building galleries and looking up at the graphic pattern of embedded plates in the concre [...]

    Read more

  • Machine | Ensuring port plugs will work as planned

    The stainless steel plugs sealing off each Tokamak port opening are not only massive, they are also complex—carrying and protecting some of the precious payload [...]

    Read more

  • Networks | Ensuring real-time distributed computing at ITER

    Many of the control systems at ITER require quick response and a high degree of determinism. If commands go out late, the state of the machine may have changed [...]

    Read more

  • Fusion codes and standards | Award for ITER Japan's Hideo Nakajima

    Hideo Nakajima, a senior engineer at ITER Japan, has received an award from the Japan Society of Mechanical Engineers (JSME) for his contribution to the develop [...]

    Read more

  • Machine assembly | First magnet in place

    When it travelled the ITER Itinerary last year, or during cold tests in the onsite winding facility, poloidal field coil #6 (PF6) felt rather large and massive. [...]

    Read more

Of Interest

See archived entries

New fusion material tested on nanoscale

The image shows disperse yttrium oxide (Y2O3) nanoparticles in ODS/Fe12Cr steel. Copyright: Universidad Carlos III de Madrid. (Click to view larger version...)
The image shows disperse yttrium oxide (Y2O3) nanoparticles in ODS/Fe12Cr steel. Copyright: Universidad Carlos III de Madrid.
The success of the fusion endeavor will crucially depend on the development of new materials capable of withstanding the harsh conditions inside a fusion reactor. The high temperature resulting from the fusion reactions together with neutron fluences of up to 200 displacements per atom (dpa) during the estimated lifetime of a reactor could give rise to hardening, swelling and microstructural changes and could thus significantly degrade the structural components of a fusion device.

Reduced activation ferrite steels strengthened by a dispersion of oxide nanoparticles are considered viable candidates for fusion applications. However, the microstructural stability and mechanical behavior of these steels when subjected to the aggressive operating conditions for an extended period of time is so far uncertain. That is why scientists at Universidad Carlos III de Madrid (UC3M), Oxford University (United Kingdom) and the University of Michigan (USA) have now joined their efforts in order to better understand the steels' atomic scale evolution under high temperature and irradiation conditions. "Until recently, studies on the microstructure of these steels have been on a micrometric scale," says Vanessa de Castro from Madrid University's Physics Department. "However, the nanometric scale is more relevant in understanding the phenomena that occur under irradiation."

In a recent paper published in Materials Science and Technology the consortium reports about the first results after having added nanometric particles to the steels which seem to help improve the mechanical properties and increase the steel's resistance. 

Click here to read the press release issued by the Universidad Carlos III de Madrid.


return to the latest published articles