Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Fusion world | Innovative approaches and how ITER can help

    More than 30 private fusion companies from around the world attended ITER's inaugural Private Sector Fusion Workshop in May 2024. Four of them participated in a [...]

    Read more

  • Robert Aymar (1936-2024) | A vision turned into reality

    Robert Aymar, who played a key role in the development of fusion research in France and worldwide, and who headed the ITER project for 10 years (1993-2003) befo [...]

    Read more

  • The ITER community | United in a common goal

    Gathered on the ITER platform for a group photo (the first one since 2019, in pre-Covid times) the crowd looks impressive. Although several hundred strong, it r [...]

    Read more

  • Vacuum vessel | Europe completes first of five sectors

    The ITER assembly teams are gearing up to receive a 440-tonne machine component shipped from Italy—sector #5, the first of five vacuum vessel sectors expected f [...]

    Read more

  • SOFT 2024 | Dublin conference highlights progress and outstanding challenges

    Nestled in the residential suburb of Glasnevin, Dublin City University is a fairly young academic institution. When it opened its doors in 1980 it had just 200 [...]

    Read more

Of Interest

See archived entries

US production of superconducting wire under way

US ITER toroidal field coil conductor production requires four miles worth of niobium-tin superconducting wire. Photo: Luvata Waterbury, Inc. (Click to view larger version...)
US ITER toroidal field coil conductor production requires four miles worth of niobium-tin superconducting wire. Photo: Luvata Waterbury, Inc.
ITER will use 100,000 kilometres of low-temperature, helium-cooled superconducting wire to generate the immense toroidal magnetic fields needed to confine the 150-million-degree Celsius plasma inside a tokamak machine. "By next September, US ITER will have its share of that wire ready," says Kevin Chan, a project engineer for the US ITER magnet systems.

The United States is responsible for 8 percent of the toroidal field coil conductor that the huge experimental fusion reactor requires; the rest of the conductor will be supplied by other ITER Members. Eighteen toroidal field magnets will encircle the inside walls of the ten-story-tall tokamak.

The US contribution translates into nine lengths of conductor packed with compacted niobium-tin wire, with each conductor length just under half a mile long. The internal-tin process superconducting wire is being made to ITER Organization specifications at Luvata Waterbury, Inc., in Waterbury, Connecticut, and Oxford Superconducting Technology, in Carteret, New Jersey.

"Before ITER, worldwide production was 20 metric tons of this wire a year," Chan said. "Now, Luvata and Oxford Superconducting Technology each are producing 5 metric tons a month." Between the two companies, nearly 200 jobs were added when the manufacturers were awarded US ITER contracts.

It is Chan's job to ensure that the toroidal field conductor is assembled with high quality, on time, and under cost. The engineer worked in the metals industry for 14 years before joining US ITER 2 years ago.

"When you produce toroidal field strands of wire, there is performance data and you look at what that tells you. The production data indicates trends," Chan explains. "The supplier is continually testing and sending us the data, and my responsibility is to look at the data. I actually watch the results of those tests. I can see, oh, something is changing. Something is not behaving as it should. Why is this? And one looks and tries to understand. That is how we work to optimize the product."

The ITER Organization sets out the testing requirements for every component made for ITER. "What I do," Chan explained, "is verify that each test has been passed. Each of the 1,422 pieces of this strand that make up the nine lengths of conductor has to be tested and must pass."

A sample of the toroidal field cable conductor (4.37 cm in diameter) shows how densely the niobium-tin wire will be compacted within the stainless steel exterior jacketing. The hole in the centre will permit liquid helium to flow through the conductor for cooling. Photo: US ITER/ORNL (Click to view larger version...)
A sample of the toroidal field cable conductor (4.37 cm in diameter) shows how densely the niobium-tin wire will be compacted within the stainless steel exterior jacketing. The hole in the centre will permit liquid helium to flow through the conductor for cooling. Photo: US ITER/ORNL
Chan said that when the finished conductor is delivered, the US ITER's commitment to that part of the project is complete. "It is high-value material, so the delivery is a big deal," he said. "Each conductor length is worth USD 5 million, and there are nine of them."

But making more than four miles' worth of wire is just the beginning of producing the finished conductor. The lengths of wire must be wound on hundreds of small spools and shipped to a cabling facility, New England Wire Technologies in New Hampshire, and later to an external casing, or jacketing, facility at High Performance Magnetics in Tallahassee, Florida. The assembly of the finished conductor is expected to take until 2016.

Assembling the cable in New Hampshire is a five-stage process. Initially, two superconducting strands and one copper strand are twisted together; next, three sets of strands are bound into a bundle; then, five of these bundles are twisted together. The resulting quintuple cord is arranged into a special configuration and becomes the subcable. Finally, to make the finished superconducting cable, six subcables are bound together around a central cooling spiral, which will permit the flow of liquid helium for cooling the wire when the magnet is energized.

The cable is then wound onto spools and sent to Tallahassee for an integration process where the cable lengths will be straightened and inserted into stainless steel tube sleeves, called jackets. These conductors are then wound onto four-metre diameter spools and shipped to France.

At the ITER site, the coil winders will reconfigure the conductors for installation. The conductors will be unwound and shaped into multiple layers called "double pancakes" to support the toroidal field magnets. The 760 metre-long cable will yield "regular double pancakes," and the 415 metre-long pieces will make "side double pancakes."

Each of the 18 toroidal field superconducting coils requires five regular double pancakes and two side double pancakes. In total, the toroidal field coils will weigh more than 6,500 tonnes, and will have a total magnetic energy of 41 gigajoules and a maximum magnetic field of 11.8 tesla.


return to the latest published articles