Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Port cells | All 46 doors in place

    In ITER, ordinary objects and features often take on an awesome dimension. Take the doors that seal off the port cells around the Tokamak for instance. Doors th [...]

    Read more

  • Toroidal field coils | Two make a pair

    One of the essential 'building blocks' of the ITER Tokamak is the pre-assembly of two toroidal field coils, one vacuum vessel sector and corresponding panels of [...]

    Read more

  • Industrial milestone | Cryostat manufacturing comes to an end in India

    With a flag-off ceremony on 30 June, India's L&T Heavy Engineering marked the end of an eight-year industrial adventure—the manufacturing of the ITER cryost [...]

    Read more

  • Local partners | A celebration for ITER's "vital artery"

    ITER is made possible through the work of thousands of scientists, engineers, workers of all trades and industries across the globe. It is also made possible by [...]

    Read more

  • Photo reportage | Travelling with a coil

    From the salt marshes of the inland sea Étang-de-Berre to the rolling hills around the ITER site (with a view of some of the highest alpine summits) an ITER con [...]

    Read more

Of Interest

See archived entries

Successful jacketing in Protvino

Alexander Petrov, ITER Project Center Russia

The spooling of the jacketed conductor at the High Energy Physics Institute in Protvino. (Click to view larger version...)
The spooling of the jacketed conductor at the High Energy Physics Institute in Protvino.
Manufacturing the toroidal field conductors for the ITER magnet system is a sophisticated, multistage process that was pioneered in Russia in summer of 1997.
 
Earlier this year, the specialists at JSC VNIIKP Podolsk cables a 760-metre cable made from 900 niobium-tin strands and 522 copper strands assembled in five stages around a central cooling spiral—the second product of this kind manufactured in Russia.
Late February, at the brand-new jacketing line at the High Energy Physics Institute in Protvino, this cable was pulled through a stainless steel jacket assembly.
 
This photo shows the lead wire used to insert the cable into the jacket assembly. (Click to view larger version...)
This photo shows the lead wire used to insert the cable into the jacket assembly.
The successful cable pull-through process, which required the most advanced Russian technical know-how, was accomplished with representatives of the Russian Domestic Agency and the ITER Organization present. The jacket itself, reaching nearly one kilometre in length, is composed of more than 70 austenitic steel tubes, butt-welded by gas tungsten-arc welding technology. Each orbital weld was subjected to stringent quality control tests, including X-ray, local helium leak tests, and dye penetrant.
 
Each orbital weld is subjected to stringent quality control tests, including X-ray, local helium leak test and dye penetrant. This photo shows the X-ray camera used for the quality checks.<br /><br /> (Click to view larger version...)
Each orbital weld is subjected to stringent quality control tests, including X-ray, local helium leak test and dye penetrant. This photo shows the X-ray camera used for the quality checks.

This insertion stage was followed by the compaction and spooling of the conductor (cable plus jacket) on a four-metre-diameter solenoid—a process that will take approximately two weeks. The product will then be transported to the Kurchatov Institute where it will undergo vacuum and hydraulic tests and await shipment to Italy, where the conductor will be wound.     

We wish to thank Arnaud Devred, Superconductor Section Leader, for his contribution to this article. 


return to the latest published articles