Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Bookmark | The Future of Fusion Energy

    To write about fusion is to walk a fine line between the temptation of lyricism and the arid demands of scientific accuracy. Whereas the general media tends to [...]

    Read more

  • Image of the week |The shine of silver

    All ITER components are precious. But some look more precious than others. A vacuum vessel sector, a toroidal field coil, a cryopump, or a divertor cassette a [...]

    Read more

  • JT-60SA | "ITER satellite" to begin operating next year

    In a major assembly milestone for the JT-60SA tokamak, the 12-metre-tall central solenoid was successfully installed by overhead crane on 8 May. Japanese televi [...]

    Read more

  • ITER physics school | Ten years of lectures now available

    The lectures from ten ITER International Schools held since 2007 have been collected and are now available through a dedicated webpage on the ITER website. I [...]

    Read more

  • "Vigyan Samagam" | India showcases megascience

    From micro to macro—specifically, from the India-based Neutrino Observatory (INO) that will study neutrino mass ordering events lasting 10-43 seconds, to the La [...]

    Read more

Of Interest

See archived entries

European agency signs long-term collaboration in diagnostics

Samina Shamsie, Fusion for Energy

Diagnostic sensors are located within the interior and the exterior of the vacuum vessel. Shown here: conduits (1), cable looms (2), and a conduit cross-section (3) where cable looms and filler material (in yellow) are visible. (Click to view larger version...)
Diagnostic sensors are located within the interior and the exterior of the vacuum vessel. Shown here: conduits (1), cable looms (2), and a conduit cross-section (3) where cable looms and filler material (in yellow) are visible.
The European Domestic Agency has signed its first Framework Partnership Agreement (FPA) for the design of diagnostic components. Amounting to EUR 3.7 million, and covering a period of up to four years, the FPA has been awarded to a consortium consisting of three laboratories from the Hungarian fusion association: Wigner RCP (formerly KFKI RMKI); MTA EK (formerly KFKI AEKI); and the Budapest University of Technology and Economics.

The agreement concerns the infrastructure (cabling, conduits, feedthroughs, connectors) for the diagnostic systems and covers R&D, engineering, quality control and testing from functional specifications. This is an important step in the drive for First Plasma, as many of these components must be installed during the first stage of ITER assembly.

So what exactly is a Framework Partnership Agreement? It establishes a long-term collaboration (for up to four years) with a beneficiary or consortium. The Agreement defines a set of rules for the accomplishment of the work; with the work itself performed under separate, specific grant agreements.

The FPA is well-fitted to projects requiring mostly R&D and early design. It is ideal for diagnostics, where designs are usually 'first-of-a-kind' and require a large, specialized design base the continuity of the design team.

A further advantage of the FPA is that it enables the European Domestic Agency (F4E) to have a stronger project management role.

This first FPA will bring together the work of some 30 people per year. F4E is expecting to award FPAs for most of the major diagnostic systems under its responsibility during 2012.

Further information on F4E's first Framework Partnership Agreement can be found here.


return to the latest published articles