Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Summer postcards from the ITER worksite

    The latest harvest of ITER construction photos may be taken from the same point—the tallest crane on site—but there is always an abundance of new detail to be g [...]

    Read more

  • The ring fortress

    ITER'ssteel-and-concretebioshield has become the definingfeature of Tokamak Complex construction. Twolevels only remain to be poured (out of six). It is a 'rin [...]

    Read more

  • The wave factory

    A year ago, work was just beginning on the steel reinforcement for the building's foundation slab. The Radio Frequency Heating Building is now nearing the last [...]

    Read more

  • It's all happening inside

    Since the giant poster was added to the Assembly Hall's completed exterior in June 2016 the building has lookedfrom afar like a finished project. Butinside, tea [...]

    Read more

  • Along skid row

    They look like perfectly aligned emergency housing units. But of course they're not: the 18 concrete structures in the ITER cryoplant are massive pads that will [...]

    Read more

Of Interest

See archived articles

European agency signs long-term collaboration in diagnostics

-Samina Shamsie, Fusion for Energy

Diagnostic sensors are located within the interior and the exterior of the vacuum vessel. Shown here: conduits (1), cable looms (2), and a conduit cross-section (3) where cable looms and filler material (in yellow) are visible. (Click to view larger version...)
Diagnostic sensors are located within the interior and the exterior of the vacuum vessel. Shown here: conduits (1), cable looms (2), and a conduit cross-section (3) where cable looms and filler material (in yellow) are visible.
The European Domestic Agency has signed its first Framework Partnership Agreement (FPA) for the design of diagnostic components. Amounting to EUR 3.7 million, and covering a period of up to four years, the FPA has been awarded to a consortium consisting of three laboratories from the Hungarian fusion association: Wigner RCP (formerly KFKI RMKI); MTA EK (formerly KFKI AEKI); and the Budapest University of Technology and Economics.

The agreement concerns the infrastructure (cabling, conduits, feedthroughs, connectors) for the diagnostic systems and covers R&D, engineering, quality control and testing from functional specifications. This is an important step in the drive for First Plasma, as many of these components must be installed during the first stage of ITER assembly.

So what exactly is a Framework Partnership Agreement? It establishes a long-term collaboration (for up to four years) with a beneficiary or consortium. The Agreement defines a set of rules for the accomplishment of the work; with the work itself performed under separate, specific grant agreements.

The FPA is well-fitted to projects requiring mostly R&D and early design. It is ideal for diagnostics, where designs are usually 'first-of-a-kind' and require a large, specialized design base the continuity of the design team.

A further advantage of the FPA is that it enables the European Domestic Agency (F4E) to have a stronger project management role.

This first FPA will bring together the work of some 30 people per year. F4E is expecting to award FPAs for most of the major diagnostic systems under its responsibility during 2012.

Further information on F4E's first Framework Partnership Agreement can be found here.


return to the latest published articles