Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Component delivery| A jewel in a box

    Sailing under the flag of Germany, the Regine is a mighty ship, strengthened for heavy cargo and equipped on its portside with two 750-tonne on-board cranes. Ha [...]

    Read more

  • Education | Make your own tokamak with 3D printing!

    It's not Lego, but it is definitely 'hands-on.' To offer a tangible device to illustrate the workings of magnetic confinement fusion in a tokamak, the ITER Orga [...]

    Read more

  • Worksite | Europe's Fusion for Energy is building the ITER installation

    Anyone driving to ITER can take full measure of the enormity of the project a few kilometers before reaching the destination. Gigantic cranes can be seen from a [...]

    Read more

  • Disruption mitigation | Experts in plasma disruptions gather online

    On 20-23 July, 120 international experts participated in the 1st IAEA Technical Meeting on Plasma Disruptions and their Mitigation, jointly organized by the Int [...]

    Read more

  • Start of assembly | World dignitaries celebrate a collaborative achievement

    Due to the constraints imposed by the COVID-19 pandemic, the crowd in the ITER Assembly Hall was small. But thanks to live broadcasting and video feed, the audi [...]

    Read more

Of Interest

See archived entries

European agency signs long-term collaboration in diagnostics

Samina Shamsie, Fusion for Energy

Diagnostic sensors are located within the interior and the exterior of the vacuum vessel. Shown here: conduits (1), cable looms (2), and a conduit cross-section (3) where cable looms and filler material (in yellow) are visible. (Click to view larger version...)
Diagnostic sensors are located within the interior and the exterior of the vacuum vessel. Shown here: conduits (1), cable looms (2), and a conduit cross-section (3) where cable looms and filler material (in yellow) are visible.
The European Domestic Agency has signed its first Framework Partnership Agreement (FPA) for the design of diagnostic components. Amounting to EUR 3.7 million, and covering a period of up to four years, the FPA has been awarded to a consortium consisting of three laboratories from the Hungarian fusion association: Wigner RCP (formerly KFKI RMKI); MTA EK (formerly KFKI AEKI); and the Budapest University of Technology and Economics.

The agreement concerns the infrastructure (cabling, conduits, feedthroughs, connectors) for the diagnostic systems and covers R&D, engineering, quality control and testing from functional specifications. This is an important step in the drive for First Plasma, as many of these components must be installed during the first stage of ITER assembly.

So what exactly is a Framework Partnership Agreement? It establishes a long-term collaboration (for up to four years) with a beneficiary or consortium. The Agreement defines a set of rules for the accomplishment of the work; with the work itself performed under separate, specific grant agreements.

The FPA is well-fitted to projects requiring mostly R&D and early design. It is ideal for diagnostics, where designs are usually 'first-of-a-kind' and require a large, specialized design base the continuity of the design team.

A further advantage of the FPA is that it enables the European Domestic Agency (F4E) to have a stronger project management role.

This first FPA will bring together the work of some 30 people per year. F4E is expecting to award FPAs for most of the major diagnostic systems under its responsibility during 2012.

Further information on F4E's first Framework Partnership Agreement can be found here.


return to the latest published articles