Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Cryoplant | Filled from floor to ceiling

    The ITER cryoplant used to be a vast echoey chamber with 5,400 m² of interior space divided into two areas; now, it is filled from floor to ceiling with industr [...]

    Read more

  • Cryostat | Adjusting, welding, testing ...

    The assembly of the ITER cryostat—the stainless steel "thermos" that insulates the ultra-cold superconducting magnets from the environment—is progress [...]

    Read more

  • Tokamak Building | Full steam ahead

    In this central arena of the construction site, construction teams are active three shifts a day—two full work shifts and a third, at night, dedicated to moving [...]

    Read more

  • Poloidal field coils | Turning tables and hot resin

    One of only two manufacturing facilities located on the ITER site, the Poloidal Field Coils Winding Facility was constructed by Europe to house the winding, imp [...]

    Read more

  • Assembly Hall | One giant standing

    Two identical handling tools in the Assembly Hall will play a critical role in preparing ITER's nine vacuum vessel sectors for their final journey: transport by [...]

    Read more

Of Interest

See archived entries

Seeing is believing

David Hamilton, Remote Handling Section

The standard work cell was implemented in a dedicated room at Oxford Technologies. (Click to view larger version...)
The standard work cell was implemented in a dedicated room at Oxford Technologies.
Remote handling will be used to perform maintenance tasks on the machine and machine components; in a complex plant like ITER, this remote maintenance is fundamentally a manual activity. Operators in charge of remote handling operations will work from two dedicated areas on the ITER site: the Remote Handling Control Room for remote operations in and around the machine and the Hot Cell Operations Control Room for remote handling within the Hot Cell Facility.

The ITER maintenance campaigns will involve carrying out a set of tasks within a fixed period by the remote handling operations team. The policy of the Remote Handling Section is to organize the control rooms into standard work cells which can be easily configured for the execution of the particular tasks required for the shutdown.

Standardization in the remote handling control room is critical for the safe and efficient execution of remote handling operations. To promote standardization across a wide range of maintenance tasks, a contract was placed with Jacobs Engineering UK Limited for the implementation of a standard remote handling control room work cell. The effort, launched in July 2011, brought together specialists in remote handling (Oxford Technologies), robotics (Intermodalics), and human factors engineering (CCD, UK).

The standard work cell, which complies with ITER's high-level control system architecture, has been implemented in a dedicated room on the Oxford Technologies premises. To simulate operations, remote handling equipment controller software was developed according to the standard model with emulation of the control of real remote handling equipment. Wherever possible, recommended standard parts were used and validated in the work cell. Within this facility, the goal was to demonstrate that standard solutions can be applied to the ITER remote handling tasks; for each task demonstration, a wide variety of remote handling tools was simulated.

Tasks in the four-person work cell are divided among the responsible officer; the deputy who controls cameras and support tools; the ''mover'' in charge of driving casks, transporters and cranes; and the ''manipulator'' in charge of the master arm and other manipulators. (Click to view larger version...)
Tasks in the four-person work cell are divided among the responsible officer; the deputy who controls cameras and support tools; the ''mover'' in charge of driving casks, transporters and cranes; and the ''manipulator'' in charge of the master arm and other manipulators.
The standard work cell has been applied to execute three typical ITER remote handling tasks in simulation: the removal of the neutral beam cesium oven (demonstration of a neutral beam task); the de-contamination of a divertor cassette in a cleaning cell (demonstration of a Hot Cell Facility task); and the removal of a central divertor cassette (demonstration of an in-vessel task).

The simulations have shown that a standard remote handling work cell can be used for a range of ITER remote handling tasks. The team was able to demonstrate the viability of various standard parts: master arm, joysticks, emergency stops, virtual reality, communication middleware, and communication protocol. The standard work cell also demonstrated a workable layout that took "human factors engineering" into account.

The success of ITER operations will depend on the ability to remotely access and maintain critical components. This successful "proof-of-concept" work cell has demonstrated that ITER Organization standards are valid solutions for ITER remote handling.



return to the latest published articles