Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Cryostat thermal shield | A "strong back" for a fragile component

    The lower cylinder thermal shield is a large silver-plated component, circular in shape and five metres tall, which fits inside the depression in the cryostat b [...]

    Read more

  • Diagnostic shielding | B4C ceramic bricks prove their worth

    A number of materials can effectively shield diagnostic equipment from the neutron flux coming from the plasma. To find the best one, the diagnostics team at IT [...]

    Read more

  • Image of the week | The cryostat top lid, batch after batch

    Batch after batch, the elements for the top lid of the ITER cryostat keep arriving from India. As of today, 7 out of the 12 required segments have been delivere [...]

    Read more

  • Cooling water system | The tanks within a tank

    Deep inside the bowels of the Tokamak Building, the entrance to one of most spectacular rooms of the whole installation resembles that of a broom cupboard. [...]

    Read more

  • ITER assembly | Last major assembly contract signed

    One year after finalizing two major machine assembly contracts, the ITER Organization has chosen the contractors who will carry out assembly and installation ac [...]

    Read more

Of Interest

See archived entries

Seeing is believing

The standard work cell was implemented in a dedicated room at Oxford Technologies. (Click to view larger version...)
The standard work cell was implemented in a dedicated room at Oxford Technologies.
Remote handling will be used to perform maintenance tasks on the machine and machine components; in a complex plant like ITER, this remote maintenance is fundamentally a manual activity. Operators in charge of remote handling operations will work from two dedicated areas on the ITER site: the Remote Handling Control Room for remote operations in and around the machine and the Hot Cell Operations Control Room for remote handling within the Hot Cell Facility.

The ITER maintenance campaigns will involve carrying out a set of tasks within a fixed period by the remote handling operations team. The policy of the Remote Handling Section is to organize the control rooms into standard work cells which can be easily configured for the execution of the particular tasks required for the shutdown.

Standardization in the remote handling control room is critical for the safe and efficient execution of remote handling operations. To promote standardization across a wide range of maintenance tasks, a contract was placed with Jacobs Engineering UK Limited for the implementation of a standard remote handling control room work cell. The effort, launched in July 2011, brought together specialists in remote handling (Oxford Technologies), robotics (Intermodalics), and human factors engineering (CCD, UK).

The standard work cell, which complies with ITER's high-level control system architecture, has been implemented in a dedicated room on the Oxford Technologies premises. To simulate operations, remote handling equipment controller software was developed according to the standard model with emulation of the control of real remote handling equipment. Wherever possible, recommended standard parts were used and validated in the work cell. Within this facility, the goal was to demonstrate that standard solutions can be applied to the ITER remote handling tasks; for each task demonstration, a wide variety of remote handling tools was simulated.

Tasks in the four-person work cell are divided among the responsible officer; the deputy who controls cameras and support tools; the ''mover'' in charge of driving casks, transporters and cranes; and the ''manipulator'' in charge of the master arm and other manipulators. (Click to view larger version...)
Tasks in the four-person work cell are divided among the responsible officer; the deputy who controls cameras and support tools; the ''mover'' in charge of driving casks, transporters and cranes; and the ''manipulator'' in charge of the master arm and other manipulators.
The standard work cell has been applied to execute three typical ITER remote handling tasks in simulation: the removal of the neutral beam cesium oven (demonstration of a neutral beam task); the de-contamination of a divertor cassette in a cleaning cell (demonstration of a Hot Cell Facility task); and the removal of a central divertor cassette (demonstration of an in-vessel task).

The simulations have shown that a standard remote handling work cell can be used for a range of ITER remote handling tasks. The team was able to demonstrate the viability of various standard parts: master arm, joysticks, emergency stops, virtual reality, communication middleware, and communication protocol. The standard work cell also demonstrated a workable layout that took "human factors engineering" into account.

The success of ITER operations will depend on the ability to remotely access and maintain critical components. This successful "proof-of-concept" work cell has demonstrated that ITER Organization standards are valid solutions for ITER remote handling.



return to the latest published articles