Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Tokamak assembly | The "module" has landed

    This 'module' was not designed to land on the Moon. But it was as complex a piece of technology, requiring as much precision in its handling as the famed 'lunar [...]

    Read more

  • Remembering Bernard Bigot, ITER Director-General 2015-2022

    On the ITER site, the machinery of construction was humming just like on any weekday. Workers were concentrating on their tasks, laying rebar for new buildings [...]

    Read more

  • Tokamak assembly | Preparing for the Big Lift

    The distance was short but the challenge daunting: on Thursday last week, the first section of the plasma chamber was lifted 50 centimetres above its suppor [...]

    Read more

  • Image of the week | 13th toroidal field coil arrives from Europe

    The toroidal field coil procurement effort has been one of the longest of the ITER program, initiated by Procurement Arrangements signed in 2007 and 2008. Manuf [...]

    Read more

  • Diagnostics | Final Procurement Arrangement signed

    ITER Diagnostics reached an important milestone in December 2021 when it concluded the last Procurement Arrangement of the diagnostics program. After signing a [...]

    Read more

Of Interest

See archived entries

Feeding the beast

Busbars, cables, insulators, pantographs, circuit-breakers... these technological components create the strange, futuristic environment of the four-hectare ITER switchyard. (Click to view larger version...)
Busbars, cables, insulators, pantographs, circuit-breakers... these technological components create the strange, futuristic environment of the four-hectare ITER switchyard.
Although no speeding train will ever cross the ITER site, the four-hectare electrical switchyard in the southwest section of the platform will act very much like a railroad junction.

In the same way railroad switches direct trains in this direction or that, open a track here and close another there ... the ITER switchyard will dispatch electricity from the newly built 400kV double power line to seven transformers connected to the installations. Construction of these transformers—four procured by the United-States and three by China—should begin in 2014.

The power that will be supplied to ITER is channelled from a giant switchyard located to the west of Avignon in Tavel (famous for its rosé wine...). From there, electricity travels 125 kilometres to a large substation in the hamlet of Boutre, close to village of Ginasservis some three kilometres south-east of the ITER platform.

The 400 kV "Boutre-Tavel" power line is an essential link in the interconnected European grid. It supplies electricity to a vast area of south-eastern France and, since the construction of a derivation in the late 1980s, also to the CEA-Euratom tokamak Tore Supra.

In terms of instantaneous electricity consumption, tokamaks are gluttonous machines. Tore Supra requires up to 100 MW of power for every plasma shot; as a much larger and more powerful machine, ITER will demand an average of three to four times more.

The anticipated needs of ITER have led to an extension and a reinforcement of the Tore Supra derivation: like "Boutre-Tavel," the new power highway delivers 400kV by way of two distinct and redundant power lines.

ITER of course will not use the power lines' total capacity. Plasma pulses will indeed need hundreds of megawatts, but the daily operation of auxiliary plant systems will require much less.

"The ITER switchyard guarantees maximum flexibility, both for ITER and for the Réseau de Transport d'électricité (RTE) that operates the Boutre-Tavel power line," explains Joël Hourtoule, section leader for ITER's Steady State Electrical Network Section.

Tension variation on a 400kV power line must remain limited to 3 percent. In order to remain within this tolerance, ITER operations must be closely coordinated with RTE dispatching.

Installing and financing the ITER switchyard and power-line extension was part of France's commitment to ITER. It will remain under the responsibility of the French Electricity Transportation Authority (RTE). (Click to view larger version...)
Installing and financing the ITER switchyard and power-line extension was part of France's commitment to ITER. It will remain under the responsibility of the French Electricity Transportation Authority (RTE).
"ITER will provide RTE with annual, monthly and weekly planning schedules. Prior to each plasma shot, ITER will send a signal to the RTE Regional Dispatch Centre in Marseille and receive back an authorization to proceed — or not. This procedure needs to be finalized prior to ITER's operational phase."

Installing and financing the ITER switchyard and power-line extension was part of France's commitment to ITER. "Our role," explains Agence Iter-France Head of Technical Projects Jean-Michel Bottereau, "was to bring the 400kV to the foot of ITER. This has been done on time and within budget."

The switchyard, which will be "powered on" in June, will remain under the responsibility of RTE. ITER's jurisdiction will begin right outside the switchyard fence, where seven transformers and several circuit breakers will be installed. The 400 kV  will be brought down to 66 and 22 kV before dispatch to the various plant systems of the ITER installation.


return to the latest published articles