Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Tokamak Complex | A changing landscape

    For the past three years, the view from the top of the highest worksite crane has not changed much. Inside of the Tokamak Complex, 80 metres below, concrete gal [...]

    Read more

  • Ion cyclotron heating | How to pump 20 MW of power into 1 gram of plasma

    To power the ion cyclotron system, the ITER Organization and its partners are designing not only new antennas, which will be housed in the tokamak vessel, but a [...]

    Read more

  • 10 years ago in Newsline | White, silent and immobile

    Ten years ago, in mid-January 2010, heavy snow fell on Provence and the white blanket that settled on the ITER platform accentuated its main feature: utter empt [...]

    Read more

Of Interest

See archived entries

Ready to hand over to industry



This model of an ITER cryopump that the vacuum team appears to be hauling out of Building 525 represents many years of development, which were recently finalized at ITER. 

The "built to print" design of this eight-tonne component (shown here at 2:3 scale) requires no less than 250 technical drawings to enable it to be manufactured to the precise standards required for the ITER Tokamak.

Detailing the design down to the smallest bolt was essential for this high-performance component to fulfil its demanding functions on ITER. The vacuum team is celebrating its completion.
Tender actions by both ITER Organization and the European Domestic Agency, Fusion For Energy, have been issued for the manufacturing of the first full-size cryopumps, which will be assembled by industry and tested at the Karlsruhe Institute of Technology in Germany.

"Cryopumps are among the most complex of ITER components," say both Vacuum Section Head Robert Pearce and Matthias Dremel, who led the final design phase. "These pumps are unique. They contain the world's largest all-metal high vacuum valve and operate with 4.5 K (minus 268.5 °C) cryogens in the harsh environment of the heart of the ITER machine."

After creating a high vacuum inside the Tokamak chamber, six torus cryopumps will have the responsibility of taking impurities and the helium ash out of the plasma, thus enabling ITER to sustain its full performance.

Two more cryopumps will be installed on the cryostat to maintain the low pressure required for the operation of the magnets.


return to the latest published articles