Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Fusion world | Mobilizing for long-pulse operation

    One of the key operational challenges in the development of fusion energy is the achievement, simultaneously, of high fusion performance and long-pulse operatio [...]

    Read more

  • ITER science | What is burning plasma?

    The dream of fusion power depends first and foremost on a self-sustaining fusion reaction, with most of the heating power needed coming from within the reaction [...]

    Read more

  • Plasma modelling | New SOLPS-ITER code version launched

    The widely used SOLPS-ITER tool for plasma edge modelling has evolved since its launch in 2015. At recent workshop at KU Leuven in Belgium, European specialists [...]

    Read more

  • Open Doors Day | Accessing the very heart of ITER

    Small or tall, knowledgeable or neophyte, from near or far ... the 600 people who took part in ITER's latest Open Doors Day all departed with the sense that som [...]

    Read more

  • Local | A question and answer session

    Nuclear safety policy in France requires that a local information commission (Commission locale d'information, CLI) be established every time a nuclear installa [...]

    Read more

Of Interest

See archived entries

Ready to hand over to industry



This model of an ITER cryopump that the vacuum team appears to be hauling out of Building 525 represents many years of development, which were recently finalized at ITER. 

The "built to print" design of this eight-tonne component (shown here at 2:3 scale) requires no less than 250 technical drawings to enable it to be manufactured to the precise standards required for the ITER Tokamak.

Detailing the design down to the smallest bolt was essential for this high-performance component to fulfil its demanding functions on ITER. The vacuum team is celebrating its completion.
Tender actions by both ITER Organization and the European Domestic Agency, Fusion For Energy, have been issued for the manufacturing of the first full-size cryopumps, which will be assembled by industry and tested at the Karlsruhe Institute of Technology in Germany.

"Cryopumps are among the most complex of ITER components," say both Vacuum Section Head Robert Pearce and Matthias Dremel, who led the final design phase. "These pumps are unique. They contain the world's largest all-metal high vacuum valve and operate with 4.5 K (minus 268.5 °C) cryogens in the harsh environment of the heart of the ITER machine."

After creating a high vacuum inside the Tokamak chamber, six torus cryopumps will have the responsibility of taking impurities and the helium ash out of the plasma, thus enabling ITER to sustain its full performance.

Two more cryopumps will be installed on the cryostat to maintain the low pressure required for the operation of the magnets.


return to the latest published articles