Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Worksite | First pillars for the crane hall

    For the overhead cranes to deliver machine components into the Tokamak assembly pit, the rails that carry them need to be extended some 80 metres beyond the tem [...]

    Read more

  • Transport | 300 tonnes of equipment on its way to ITER

    A specially designed assembly tool and elements of the cryostat and vacuum vessel thermal shields are part of the shipments travelling now from Korea to ITER. W [...]

    Read more

  • Fusion world | A new tokamak in town

    After EAST in China and WEST in France, another of the cardinal points of the compass has been chosen to name a tokamak. Introducing NORTH—the NORdic Tokamak de [...]

    Read more

  • Opportunities | Bringing the ITER Business Forum to Washington

    Every second year, a two-day ITER Business Forum is held to invite existing and potential suppliers for the ITER Project—laboratories, universities, and compani [...]

    Read more

  • World Energy Congress | Fusion "at a time of transition"

    In the United Arab Emirates, Abu Dhabi is often referred to as a tourism hotspot that combines luxury and ancient traditions. In September, Abu Dhabi was in the [...]

    Read more

Of Interest

See archived entries

Predicting the neutrons' impact

Lynne Degitz, US ITER

Standing in front of a neutronics model of ITER: (left to right) Ed Marriott, Tim Bohm, Paul Wilson, Mohamed Sawan and Ahmad Ibrahim, US ITER researchers at the University of Wisconsin. (Click to view larger version...)
Standing in front of a neutronics model of ITER: (left to right) Ed Marriott, Tim Bohm, Paul Wilson, Mohamed Sawan and Ahmad Ibrahim, US ITER researchers at the University of Wisconsin.
US ITER researchers at the University of Wisconsin and Oak Ridge National Laboratory are developing advanced processes to assess ITER's unique tokamak components and materials in the presence of the tremendous amount of neutron flux and energy released by fusion reactions. The process, called neutronics analysis, involves a palette of complex computational codes and libraries for predicting neutron impacts.

Click here to read more.


return to the latest published articles