Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Building ITER | Halfway to First Plasma

    It's been a long road and we haven't reached our destination yet. But on its way to operation, ITER has just passed a significant milestone: according to the st [...]

    Read more

  • Director-General | Visits and an award in Washington

    Keeping the governments and policy makers of the ITER Members informed on the project's progress and challenges is an essential part of the Director-General's m [...]

    Read more

  • On-site coil winding | Big, round and red

    It's big, round and red and represents the latest addition to the collection of cranes operating on the ITER construction site. On Friday 8 November, two power [...]

    Read more

  • Milestones | Japan completes central solenoid conductor

    The Japanese Domestic Agency has successfully completed the procurement of 43 kilometres (700 tonnes) of niobium-tin cable-in-conduit superconductor for ITER's [...]

    Read more

  • Neutral beam test facility | Powerful ion source delivered

    OnSPIDER, one of twotestbeds at the ITER Neutral Beam Test Facility, the negative ion source for ITER's heating neutral beam system will be demonstrated at full [...]

    Read more

Of Interest

See archived articles

Predicting the neutrons' impact

Lynne Degitz, US ITER

Standing in front of a neutronics model of ITER: (left to right) Ed Marriott, Tim Bohm, Paul Wilson, Mohamed Sawan and Ahmad Ibrahim, US ITER researchers at the University of Wisconsin. (Click to view larger version...)
Standing in front of a neutronics model of ITER: (left to right) Ed Marriott, Tim Bohm, Paul Wilson, Mohamed Sawan and Ahmad Ibrahim, US ITER researchers at the University of Wisconsin.
US ITER researchers at the University of Wisconsin and Oak Ridge National Laboratory are developing advanced processes to assess ITER's unique tokamak components and materials in the presence of the tremendous amount of neutron flux and energy released by fusion reactions. The process, called neutronics analysis, involves a palette of complex computational codes and libraries for predicting neutron impacts.

Click here to read more.


return to the latest published articles