Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • In-vessel electrical systems | What it takes to wire up a fusion reactor

    While the challenges of keeping cables operational in harsh environments such as jet engines and nuclear fission reactors have been understood for a long time, [...]

    Read more

  • Assembly preparation | Off goes the lid

    In the summer of 2017, a circular platform was installed inside of the large steel-and-concrete cylinder of the Tokamak pit. The 200-tonne structure was meant t [...]

    Read more

  • Deliveries | Two coils on their way

    For the past five years, 'highly exceptional loads' (HEL) have been successfully travelling along the ITER Itinerary to be delivered to the ITER site. As the pr [...]

    Read more

  • ITER NOW video | Ready for the big lifts

    This new video in our "ITER NOW" series provides an insider's view of the recent load tests performed as the ITER Organization prepares for the machin [...]

    Read more

  • Divertor | Far more than a fancy ashtray

    It has been likened to the filter of a swimming pool or an oversized ashtray. It has been called alien in shape and hellish in its affinity for heat. But whatev [...]

    Read more

Of Interest

See archived entries

Conductors for 6 out of 18 toroidal field coils manufactured

Sabina Griffith

From the 330 tonnes of Nb3Sn strands that have been manufactured, conductors for six toroidal field coils have been produced. (Click to view larger version...)
From the 330 tonnes of Nb3Sn strands that have been manufactured, conductors for six toroidal field coils have been produced.
The production of superconducting cables for ITER's large and powerful toroidal field coils is making remarkable progress: as of today, 330 tonnes of strands made out of Nb3Sn, a special alloy made of niobium and tin, have been produced in factories in China, Europe, Japan, Korea, Russia and the United States. In the pre-ITER world, global production was 15 tonnes a year. "The current production status represents 75 percent of the total toroidal field strands required for ITER," reports Arnaud Devred, Section Leader for Superconducting Systems. "Out of these strands, conductors for 6 out of the machine's 18 toroidal field coils have been produced."

The 18 toroidal field coils will produce a magnetic field around the ITER torus helping to confine and control the plasma inside. The coils are designed to achieve operation at magnetic fields up to 13 Tesla. They are made of cable-in-conduit superconductors in which a bundle of superconducting strands is cabled together and contained in a structural jacket. Unit lengths of theses cables—measuring 760 metres or 415 metres depending on their position within the coil—are then spooled into a D-shaped double spiral called a "double pancake," giving the structure the characteristic shape of ITER's toroidal field coils.

As of today, a total of thirty 760-metre unit lengths and thirteen 415-metre unit lengths have been manufactured by the procuring agencies in Japan, Korea, Russia and Europe, adding up to the material required for 6 of the 18 toroidal field coils.

"Quality tests are currently underway," says Devred, "to confirm that these unit lengths can be accepted for coil winding."


return to the latest published articles