Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • The making of a ring coil—a photo story

    From one end to the other of the on-site manufacturing facility for poloidal field coils, the different production stations are now clearly delimited, with tool [...]

    Read more

  • An unexpected fusion spinoff: aircraft carrier catapult

    The US company General Atomics is fabricating the 'beating heart of ITER,' an electromagnet called the central solenoid that is so large and powerful, that its [...]

    Read more

  • First steps towards "energizing"

    It takes more than the flipping of a switch to connect the ITER site to the French national grid. The operation, called a 'first energizing,' is a complex, step [...]

    Read more

  • The bioshield rises

    The bioshield structure is rising at the heart of the Tokamak Building. The last plot of the B1 level was poured last week; about half of the first ground level [...]

    Read more

  • Barcelona Supercomputer Center and ITER strengthen ties

    In a Memorandum of Understanding signed on 12 January 2017, the ITER Organization and the Barcelona Supercomputing Center (BSC) in Spain have agreed 'to promote [...]

    Read more

Of Interest

See archived articles

Conductors for 6 out of 18 toroidal field coils manufactured

-Sabina Griffith

From the 330 kg of Nb3Sn strands that have been manufactured, conductors for six toroidal field coils have been produced. (Click to view larger version...)
From the 330 kg of Nb3Sn strands that have been manufactured, conductors for six toroidal field coils have been produced.
The production of superconducting cables for ITER's large and powerful toroidal field (TF) coils is making remarkable progress: as of today, 330 tons of strands made out of Nb3Sn, a special alloy made of niobium and tin, have been produced in factories in China, Europe, Japan, Korea, Russia and the United States. In the pre-ITER world, global production was 15 tons a year. "The current production status represents 75 percent of the total toroidal field strands required for ITER," reports Arnaud Devred, Section Leader for Superconducting Systems. "Out of these strands, conductors for 6 out of the machine's 18 toroidal field coils have been produced."

The 18 toroidal field coils will produce a magnetic field around the ITER torus helping to confine and control the plasma inside. The coils are designed to achieve operation at magnetic fields up to 13 Tesla. They are made of cable-in-conduit superconductors in which a bundle of superconducting strands is cabled together and contained in a structural jacket. Unit lengths of theses cables—measuring 760 metres or 415 metres depending on their position within the coil—are then spooled into a D-shaped double spiral called a "double pancake," giving the structure the characteristic shape of ITER's toroidal field coils.

As of today, a total of thirty 760-metre unit lengths and thirteen 415-metre unit lengths have been manufactured by the procuring agencies in Japan, Korea, Russia and Europe, adding up to the material required for 6 of the 18 toroidal field coils.

"Quality tests are currently underway," says Devred, "to confirm that these unit lengths can be accepted for coil winding."


return to the latest published articles