Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Worksite postcards | Under fog and autumn light

    Due to its proximity to the Durance River and to the narrow gully spanned by the Bridge of Mirabeau, the area around ITER often experiences a peculiar meteorolo [...]

    Read more

  • Assembly Hall | Another massive paint job

    By the end of December, the massive painting job in the Assembly Hall will be complete and the building's floor will be as white and pristine as the landscape i [...]

    Read more

  • ITER India | Testing a neutral beam for diagnostics

    Every 23 seconds during fusion operation, a probe beam will penetrate deep into the core of the ITER plasma to aid in the detection of helium ash—one of fusion' [...]

    Read more

  • Welded attachments | Follow the laser projections

    How do you position 150,000 welded attachments on to a vacuum vessel the size of a house, each one needing to be accurately placed to less than a 4 mm target? [...]

    Read more

  • Visit | Our neighbour the Nobel

    In 2018, the Nobel Prize in Physics was awarded to Gérard Mourou for his work on ultra-short, extremely high-intensity laser pulses—the so-called 'chirped pulse [...]

    Read more

Of Interest

See archived entries

UV light from plasma to etch next-generation chips

Xenon plasma produced in this laboratory equipment generates the Extreme Ultraviolet (EUV) wavelentgh that should provide the light output that the microprocessor industry needs. © University of Washington (Click to view larger version...)
Xenon plasma produced in this laboratory equipment generates the Extreme Ultraviolet (EUV) wavelentgh that should provide the light output that the microprocessor industry needs. © University of Washington
Light is the etching tool industry uses to create the microscopic circuits on the surface of silicon microprocessors. As "chips" follow Moore's law and become more powerful with each new generation, the features on the silicon become denser, meaning smaller structures need to be etched.

The short-wave (193 nanometres) ultraviolet light that is currently used by the industry is neither "sharp" nor powerful enough to meet the next generations' standards. What industry needs is light with an even shorter wavelength—less than one-tenth the present one—that will enable the etching of even finer grooves.

Such extreme ultraviolet light can be created only from plasmas. Scientists at the University of Washington College of Engineering have developed a "low-cost version of a fusion reactor," dubbed ZaP, that should provide the light output that the microprocessor industry needs.
 
Read the full story here


return to the latest published articles