Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Local partners | A celebration for ITER's "vital artery"

    ITER is made possible through the work of thousands of scientists, engineers, workers of all trades and industries across the globe. It is also made possible by [...]

    Read more

  • Photo reportage | Travelling with a coil

    From the salt marshes of the inland sea Étang-de-Berre to the rolling hills around the ITER site (with a view of some of the highest alpine summits) an ITER con [...]

    Read more

  • Image of the week | Shiny steel and sharp edges

    All shiny steel, sharp edges and perfectly machined penetrations and grooves, two toroidal field coils are being prepared for the pre-assembly process. The sp [...]

    Read more

  • Vacuum vessel sector #6 | On its way

    A 440-tonne, 40-degree sector of the ITER vacuum vessel left Busan, Korea, on Sunday 28 June. A unique component has taken to the sea—one that was more than t [...]

    Read more

  • Top management | Keun-Kyeong Kim, Head of Construction

    In the small Korean village (25 houses!) where Keun-Kyeong Kim spent the first eight years of his life, there was no electricity— just batteries to power transi [...]

    Read more

Of Interest

See archived entries

UV light from plasma to etch next-generation chips

Xenon plasma produced in this laboratory equipment generates the Extreme Ultraviolet (EUV) wavelentgh that should provide the light output that the microprocessor industry needs. © University of Washington (Click to view larger version...)
Xenon plasma produced in this laboratory equipment generates the Extreme Ultraviolet (EUV) wavelentgh that should provide the light output that the microprocessor industry needs. © University of Washington
Light is the etching tool industry uses to create the microscopic circuits on the surface of silicon microprocessors. As "chips" follow Moore's law and become more powerful with each new generation, the features on the silicon become denser, meaning smaller structures need to be etched.

The short-wave (193 nanometres) ultraviolet light that is currently used by the industry is neither "sharp" nor powerful enough to meet the next generations' standards. What industry needs is light with an even shorter wavelength—less than one-tenth the present one—that will enable the etching of even finer grooves.

Such extreme ultraviolet light can be created only from plasmas. Scientists at the University of Washington College of Engineering have developed a "low-cost version of a fusion reactor," dubbed ZaP, that should provide the light output that the microprocessor industry needs.
 
Read the full story here


return to the latest published articles