Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Divertor inner target | Trial by fire

    The first full-scale industrial prototype of a divertor inner vertical target has successfully passed through a rigorous campaign of thermal testing. In the [...]

    Read more

  • In-vessel tasks | Step right up onto the platform

    In order to accommodate the dozens of teams that will be involved with assembly tasks on the inside of the vacuum chamber, the ITER Organization has designed a [...]

    Read more

  • Steady at the helm | Bernard Bigot accepts a second term

    In a unanimous decision, the ITER Council has voted to reappoint Dr Bernard Bigot to a second five-year term as Director-General of the ITER Organization. The C [...]

    Read more

  • Electrical network | Independance Day

    For over 10 years, power has been supplied to ITER by the neighbouring CEA research facility. Since Saturday, however, the entire ITER site is independently pow [...]

    Read more

  • Image of the week | A long journey for the last cold box

    Procured by India and manufactured by Linde Kryotechnik AG near Zürich, Switzerland, the last of the cold boxes needed for the ITER cryoplant has begun its long [...]

    Read more

Of Interest

See archived entries

Dancing DT retention in tungsten!

Gieljan de Vries, FOM Institute DIFFER

Tungsten atoms (dancers in black) in the fusion reactor wall get displaced by neutrons from the fusion reaction, and go on to displace neighbouring tungsten atoms in a knock-on effect. The defects in the metal lattice then capture hydrogen (yellow). (Click to view larger version...)
Tungsten atoms (dancers in black) in the fusion reactor wall get displaced by neutrons from the fusion reaction, and go on to displace neighbouring tungsten atoms in a knock-on effect. The defects in the metal lattice then capture hydrogen (yellow).
What is your research about? It's not often that you see a scientist break out in dance when you ask that question. Yet this is exactly what the international contest Dance your PhD challenges young researchers to do: explain their work in the form of a dance performance. The winner gets featured in Science and at TEDxBrussels, and wins a USD 1,000 prize.

At the Dutch Institute for Fundamental Energy Research DIFFER, PhD candidate Rianne 't Hoen took up the gauntlet with the great escape, a performance about hydrogen retention in the wall materials of future fusion reactors.

As a researcher, Rianne 't Hoen works on the physics behind retention of deuterium and tritium in tungsten, the candidate material for the ITER divertor. She started her four-year PhD research at DIFFER in 2009, the same year that saw the first edition of Dance your PhD.

"My PhD dance is performed around and on the experiment I'm using for my research, Magnum-PSI. It is capable of reproducing the conditions that we expect in the wall of a fusion reactor so that we can test materials on their capabilities of withstanding such a harsh environment."

Rianne 't Hoen's performance is one of the entries in the physics category of Dance your PhD. A jury consisting of scientists and artists rate each entry on the creativity and on how it manages to bring across the key scientific concept in the research.

Participants can win one of four USD 500 prizes in the categories of biology, chemistry, physics and social science, with the best of these four receiving another USD 500 prize and the chance to present their movie at the TEDxBrussels event. The winners will be announced in the coming weeks.

Click here to watch a video of Rianne 't Hoen's performance


return to the latest published articles