Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Port cells | All 46 doors in place

    In ITER, ordinary objects and features often take on an awesome dimension. Take the doors that seal off the port cells around the Tokamak for instance. Doors th [...]

    Read more

  • Toroidal field coils | Two make a pair

    One of the essential 'building blocks' of the ITER Tokamak is the pre-assembly of two toroidal field coils, one vacuum vessel sector and corresponding panels of [...]

    Read more

  • Industrial milestone | Cryostat manufacturing comes to an end in India

    With a flag-off ceremony on 30 June, India's L&T Heavy Engineering marked the end of an eight-year industrial adventure—the manufacturing of the ITER cryost [...]

    Read more

  • Local partners | A celebration for ITER's "vital artery"

    ITER is made possible through the work of thousands of scientists, engineers, workers of all trades and industries across the globe. It is also made possible by [...]

    Read more

  • Photo reportage | Travelling with a coil

    From the salt marshes of the inland sea Étang-de-Berre to the rolling hills around the ITER site (with a view of some of the highest alpine summits) an ITER con [...]

    Read more

Of Interest

See archived entries

ASDEX Upgrade breaks record for power exhaust

Isabella Milch, Max-Planck-Institut für Plasmaphysik, Garching

 (Click to view larger version...)
A world record in heating power, in relation to the size of the device, has been achieved by the ASDEX Upgrade fusion device at the Max Planck Institute of Plasma Physics (IPP) in Garching: This was made possible by a sophisticated control system.

For the first time worldwide, a fast feedback control facility ensures, on the one hand, that the hot (millions of degrees), high-power plasmas needed are produced and, on the other, that the wall of the plasma vessel is not overloaded, this being an important result on the way to a fusion power plant.

[...] The hitherto unattained heating power of 14 megawatts per metre with respect to the radius of the device was achieved without overloading the divertor plates.

Read more here.


return to the latest published articles