Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • ITER DNA | A "case" study...

    In December last year, and again this year in early May, pre-welding fitting tests demonstrated that steel components as tall as a four-storey building (and wei [...]

    Read more

  • First plasma| Temporary in-vessel protection

    The vacuum vessel, the operating theatre of the ITER machine, needs to be protected against possible damage from the hot plasma at any given time during its ope [...]

    Read more

  • Divertor cassettes | Successful prototypes open way to series

    Before embarking on the fabrication of the 54 complex steel structures that will form a ring at the bottom of the ITER machine—the divertor cassettes—the Europe [...]

    Read more

  • Images of the week | Titan tool 90 percent complete

    Towering 22 metres above ground and weighing approximately 800 tonnes, the twin sector sub-assembly tools (SSAT) are formidable handling machines that will be u [...]

    Read more

  • Video | How does the ITER cryoplant work?

    Cold is essential to ITER—10,000 tonnes of superconducting magnets, the thermal shield that surrounds the machine, the cryopumps that achieve the high vacuum in [...]

    Read more

Of Interest

See archived articles

ASDEX Upgrade breaks record for power exhaust

Isabella Milch, Max-Planck-Institut für Plasmaphysik, Garching

 (Click to view larger version...)
A world record in heating power, in relation to the size of the device, has been achieved by the ASDEX Upgrade fusion device at the Max Planck Institute of Plasma Physics (IPP) in Garching: This was made possible by a sophisticated control system.

For the first time worldwide, a fast feedback control facility ensures, on the one hand, that the hot (millions of degrees), high-power plasmas needed are produced and, on the other, that the wall of the plasma vessel is not overloaded, this being an important result on the way to a fusion power plant.

[...] The hitherto unattained heating power of 14 megawatts per metre with respect to the radius of the device was achieved without overloading the divertor plates.

Read more here.


return to the latest published articles