Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Plasma-wall interaction | Marseille palace hosts preeminent conference

    Fifty years after the first International Conference on Plasma-Surface Interactions in Magnetic Confinement Devices in 1974, the 26th edition of this much-laude [...]

    Read more

  • Industrial milestone | First cryopump passes all tests

    The serial production of ITER's powerful torus and cryostat cryopumps is progressing at Research Instruments, Germany, on behalf of the European Domestic Agency [...]

    Read more

  • Cryoline installation | Ball joints against earthquakes

    In order to reach clients inside the Tokamak Building, cooling fluids produced by the ITER cryoplant flow through many kilometres of highly sophisticated p [...]

    Read more

  • The changing fusion landscape | ITER hosting private sector workshop

    Take out your smart phone and search your favourite news site for 'nuclear fusion' or 'fusion energy.' On any given day, you will find articles discussing break [...]

    Read more

  • Image of the Week | Advisory committee season

    The 30th Meeting of the ITER Council Science and Technology Advisory Committee (STAC-30) took place at ITER Headquarters from 13 to 16 May. The Science and Tech [...]

    Read more

Of Interest

See archived entries

Bringing it all together for DEMO

Experts at Culham Centre for Fusion Energy (CCFE) have carried out the first-ever integrated assessment of the life expectancy of materials in a full-scale fusion power plant design.

The study focused on the effects caused by the build-up of helium in fusion materials. When neutrons from fusion reactions hit the materials in reactor components, they trigger nuclear reactions that cause transmutation (the changing of elements to form new ones). Helium is one of the gases produced by such reactions. The accumulation of helium causes swelling and embrittlement of materials—leading to fracture—and is one of the factors expected to limit the lifetime of components in a fusion power plant.

Materials modellers Mark Gilbert and Sergei Dudarev, working with CCFE specialists in nuclear data and neutron transport (Lee Packer, Jean-Christophe Sublet, and Shanliang Zheng) have conducted a pioneering study in which a fusion power plant design was explored and assessed using an integrated computational model that gives a detailed prediction of the lifetime of components under helium embrittlement.

An artist's impression based on European fusion power plant design. © EFDA (Click to view larger version...)
An artist's impression based on European fusion power plant design. © EFDA
The results will help guide the choice of materials for the design of DEMO, the prototype power plant that will follow the ITER experiment.

"We found wide variations between the behaviour of different materials," said Mark Gilbert. "The good news is that tungsten (the likely material for the 'divertor' plasma exhaust system in DEMO as well as ITER) shows low susceptibility to helium accumulation and embrittlement. However, in the iron of steels, for example, there is higher helium production in components bearing the brunt of neutrons from fusion reactions. The study highlights the need to develop materials with special microstructure, such as oxide dispersion strengthened steels that can resist the effects of helium accumulation without becoming brittle."

"We think the integrated approach we have adopted has worked well, and it will now help advance the EFDA materials program as a result."

The results of the work are published in Nuclear Fusion 52 (2012) 083019.


return to the latest published articles