Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • In-vessel electrical systems | What it takes to wire up a fusion reactor

    While the challenges of keeping cables operational in harsh environments such as jet engines and nuclear fission reactors have been understood for a long time, [...]

    Read more

  • Assembly preparation | Off goes the lid

    In the summer of 2017, a circular platform was installed inside of the large steel-and-concrete cylinder of the Tokamak pit. The 200-tonne structure was meant t [...]

    Read more

  • Deliveries | Two coils on their way

    For the past five years, 'highly exceptional loads' (HEL) have been successfully travelling along the ITER Itinerary to be delivered to the ITER site. As the pr [...]

    Read more

  • ITER NOW video | Ready for the big lifts

    This new video in our "ITER NOW" series provides an insider's view of the recent load tests performed as the ITER Organization prepares for the machin [...]

    Read more

  • Divertor | Far more than a fancy ashtray

    It has been likened to the filter of a swimming pool or an oversized ashtray. It has been called alien in shape and hellish in its affinity for heat. But whatev [...]

    Read more

Of Interest

See archived entries

Bringing it all together for DEMO

Nick Holloway, Culham Centre for Fusion Energy

Experts at Culham Centre for Fusion Energy (CCFE) have carried out the first-ever integrated assessment of the life expectancy of materials in a full-scale fusion power plant design.

The study focused on the effects caused by the build-up of helium in fusion materials. When neutrons from fusion reactions hit the materials in reactor components, they trigger nuclear reactions that cause transmutation (the changing of elements to form new ones). Helium is one of the gases produced by such reactions. The accumulation of helium causes swelling and embrittlement of materials—leading to fracture—and is one of the factors expected to limit the lifetime of components in a fusion power plant.

Materials modellers Mark Gilbert and Sergei Dudarev, working with CCFE specialists in nuclear data and neutron transport (Lee Packer, Jean-Christophe Sublet, and Shanliang Zheng) have conducted a pioneering study in which a fusion power plant design was explored and assessed using an integrated computational model that gives a detailed prediction of the lifetime of components under helium embrittlement.

An artist's impression based on European fusion power plant design. © EFDA (Click to view larger version...)
An artist's impression based on European fusion power plant design. © EFDA
The results will help guide the choice of materials for the design of DEMO, the prototype power plant that will follow the ITER experiment.

"We found wide variations between the behaviour of different materials," said Mark Gilbert. "The good news is that tungsten (the likely material for the 'divertor' plasma exhaust system in DEMO as well as ITER) shows low susceptibility to helium accumulation and embrittlement. However, in the iron of steels, for example, there is higher helium production in components bearing the brunt of neutrons from fusion reactions. The study highlights the need to develop materials with special microstructure, such as oxide dispersion strengthened steels that can resist the effects of helium accumulation without becoming brittle."

"We think the integrated approach we have adopted has worked well, and it will now help advance the EFDA materials program as a result."

The results of the work are published in Nuclear Fusion 52 (2012) 083019.


return to the latest published articles