Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Cryoplant | Filled from floor to ceiling

    The ITER cryoplant used to be a vast echoey chamber with 5,400 m² of interior space divided into two areas; now, it is filled from floor to ceiling with industr [...]

    Read more

  • Cryostat | Adjusting, welding, testing ...

    The assembly of the ITER cryostat—the stainless steel "thermos" that insulates the ultra-cold superconducting magnets from the environment—is progress [...]

    Read more

  • Tokamak Building | Full steam ahead

    In this central arena of the construction site, construction teams are active three shifts a day—two full work shifts and a third, at night, dedicated to moving [...]

    Read more

  • Poloidal field coils | Turning tables and hot resin

    One of only two manufacturing facilities located on the ITER site, the Poloidal Field Coils Winding Facility was constructed by Europe to house the winding, imp [...]

    Read more

  • Assembly Hall | One giant standing

    Two identical handling tools in the Assembly Hall will play a critical role in preparing ITER's nine vacuum vessel sectors for their final journey: transport by [...]

    Read more

Of Interest

See archived entries

Bringing it all together for DEMO

Nick Holloway, Culham Centre for Fusion Energy

Experts at Culham Centre for Fusion Energy (CCFE) have carried out the first-ever integrated assessment of the life expectancy of materials in a full-scale fusion power plant design.

The study focused on the effects caused by the build-up of helium in fusion materials. When neutrons from fusion reactions hit the materials in reactor components, they trigger nuclear reactions that cause transmutation (the changing of elements to form new ones). Helium is one of the gases produced by such reactions. The accumulation of helium causes swelling and embrittlement of materials—leading to fracture—and is one of the factors expected to limit the lifetime of components in a fusion power plant.

Materials modellers Mark Gilbert and Sergei Dudarev, working with CCFE specialists in nuclear data and neutron transport (Lee Packer, Jean-Christophe Sublet, and Shanliang Zheng) have conducted a pioneering study in which a fusion power plant design was explored and assessed using an integrated computational model that gives a detailed prediction of the lifetime of components under helium embrittlement.

An artist's impression based on European fusion power plant design. © EFDA (Click to view larger version...)
An artist's impression based on European fusion power plant design. © EFDA
The results will help guide the choice of materials for the design of DEMO, the prototype power plant that will follow the ITER experiment.

"We found wide variations between the behaviour of different materials," said Mark Gilbert. "The good news is that tungsten (the likely material for the 'divertor' plasma exhaust system in DEMO as well as ITER) shows low susceptibility to helium accumulation and embrittlement. However, in the iron of steels, for example, there is higher helium production in components bearing the brunt of neutrons from fusion reactions. The study highlights the need to develop materials with special microstructure, such as oxide dispersion strengthened steels that can resist the effects of helium accumulation without becoming brittle."

"We think the integrated approach we have adopted has worked well, and it will now help advance the EFDA materials program as a result."

The results of the work are published in Nuclear Fusion 52 (2012) 083019.


return to the latest published articles