First four levels of Tokamak Complex now defined

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • In-vessel coils | First components arrive on site

    ITER has received the first shipments of mineral-insulated conductor for ITER's in-vessel coils. The first lengths are destined for winding and bending trials a [...]

    Read more

  • Controlling divertor power fluxes in 3D | ITER Scientist Fellows make progress

    New research results open a path to an integrated solution for optimizing the control of stationary and transient power fluxes on ITER.   Tokamak plasmas [...]

    Read more

  • Cooperation | Canada returns to the table

    Canada, one of the early participants in ITER, is back in the project. On Thursday 15 October, Bernard Bigot, on behalf of the ITER Organization, and Assistant [...]

    Read more

  • Heat rejection basins | A massive fill-up

    When the ITER Tokamak begins producing burning plasmas and auxiliary systems are operating at full capacity, the amount of heat to be removed from the installat [...]

    Read more

  • Fusion world | Teaching teachers about fusion

    The possibility to visit three fusion facilities, all in one afternoon. Welcome to the new virtual world! More than 300 science teachers recently seized the opp [...]

    Read more

Of Interest

See archived entries

First four levels of Tokamak Complex now defined

Ingo Kuehn, Tokamak Complex Buildings Integration

The heart of the ITER facility will be the Tokamak Complex, comprising the Tokamak Building, the Diagnostic Building, and the Tritium Plant.

The seven-storey Complex measuring 118 by 80 metres and towering 57 metres above the platform will contain more than 30 different plant systems including cooling systems and electrical power supplies, all having physical as well as functional interfaces. As you can tell from the configuration drawing there won't be much extra room for manoeuvring. The house is pretty busy!

With more than 30 different plant systems the seven-storey Tokamak Complex will be a pretty busy house... (Click to view larger version...)
With more than 30 different plant systems the seven-storey Tokamak Complex will be a pretty busy house...
In order to make sure that all the necessary pipes, ducts, structures, cable trays and penetrations are correctly defined before the pouring of the concrete, a Building Integration Task Force was created in April last year to go through the building floor by floor. All the required documentation has now been delivered for the basement level (B2), the lower level (B1) and the equatorial level (L1) according to the agreed schedule with the European Domestic Agency Fusion for Energy and the Architect Engineer ENGAGE. The upper level (L2) has also been reviewed and the data files will be handed over by the end of this month.

The configuration for each level was reviewed in compliance with the safety files and the installation and assembly feasibility of the systems and components. The design also respects the requirements on the civil works such as radiation shielding, fire protection and sectorization, and confinement leak tightness.

For the Level B2 slab, the detailed design of the rebar arrangement will be completed by F4E's designer Engage by December followed by the review of all the embedded steel plates that will be cast into the concrete to support the heavy loads.

About 55,000 such plates have been identified and tagged in the floors, walls and ceilings of the Tokamak Complex. The review will focus on the exact position of each plate with respect to the concrete rebar grid. Furthermore, for each plate the plate type and anchoring system need to be confirmed. Following the finalization of the design in March 2013, pouring will begin on the B2 slab. This process will continue for the remaining levels of the Tokamak Complex.


return to the latest published articles