Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Question of the week | Will fusion run out of fuel?

    One of the paradoxes of fusion, the virtually inexhaustible energy of the future, is that it relies on an element that does not exist—or just barely. Tritium, o [...]

    Read more

  • Managing data | Setting up a robust process

    Are the ITER systems and processes robust enough to manage the technical and project data for a program of ITER's complexity? Will quality information be made a [...]

    Read more

  • Image of the week | Bullseye

    Two perfectly circular structures, looking a lot like archery targets, have been installed on the west-facing wall of the Tokamak Complex. They are not for sh [...]

    Read more

  • Art and science | Seeking new perspectives on fusion

    Standing in the middle of the Tokamak Building, sound artist Julian Weaver positions his 3D microphone near one of the openings of the bioshield to record the s [...]

    Read more

  • Worksite photos | The view one never tires of

    For the past three-and a half years, ITER Communication has been documenting construction progress from the top of the tallest crane on the ITER worksite. Altho [...]

    Read more

Of Interest

See archived entries

Deuterium from a quantum sieve

The Max Planck Society

A sieve for molecules: The crystals of the metal-organic compound can be seen at a magnification of more than X6000 under the scanning electron microscope. © MPI for Intelligent Systems (Click to view larger version...)
A sieve for molecules: The crystals of the metal-organic compound can be seen at a magnification of more than X6000 under the scanning electron microscope. © MPI for Intelligent Systems
A metal-organic framework separates hydrogen isotopes more efficiently than previous methods

Deuterium is the heavy twin brother of hydrogen; however, it is more than 20 times rarer than identical twins. It accounts for only 0.015 percent of natural hydrogen and is twice as heavy as the light isotope.

There is no chemical difference between the two isotopes: both deuterium and ordinary hydrogen react with oxygen to form water. Its double mass allows researchers to lay a trail to elucidate chemical reactions or metabolic processes, however. They dispatch a compound containing deuterium into the processes and analyze in which conversion product it turns up. And this is only one of the tasks that deuterium fulfils in research. It may even become an inexhaustible and climate-neutral fuel in future.

This would be the case if nuclear fusion becomes so technically mature that energy is generated on Earth using the same process that also occurs in the Sun. This produces much less radioactive waste than nuclear fission.

In a cooperation established within the DFG German Research Foundation's priority program "Porous Metal-Organic Frameworks" (SPP 1362), a team of scientists from the Max Planck Institute for Intelligent Systems in Stuttgart, Jacobs University Bremen and the University of Augsburg have now been able to enrich deuterium contained in hydrogen more efficiently than with conventional methods.

The findings are reported in the journal Advanced Materials. The researchers discovered that a certain metal-organic framework, abbreviated MOF, absorbs deuterium more easily than common hydrogen at temperatures below minus 200 degrees Celsius.

Read more here. 


return to the latest published articles