Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • A wide angle on progress

    Whether captured from the top of a crane or from a drone hovering at an altitude of a few dozen metres, the ITER site isalways spectacular. After almost seven y [...]

    Read more

  • Inside the arena

    A visit to the deep "well" where the ITER Tokamak assembly will begin next year begins with a journey underground ... through a maze of giant pillars, [...]

    Read more

  • 10,000 tonnes of magnets to cool

    In ITER, huge volumesof liquid helium will be circulated throughout a complex, five-kilometre network of pipes, pumps and valves to keep the 10,000-tonne magnet [...]

    Read more

  • Heaviest convoy yet

    The triple convoy that reached ITER on Thursday 13 April wasthe heaviest ever organized since the beginning of "highly exceptional" deliveries in Janu [...]

    Read more

  • Gouging the giant's eye

    On the side of the ITER bioshield that faces the main ITER office building, four large openings have been preserved to allow passage for the neutral beam inject [...]

    Read more

Of Interest

See archived articles

Deuterium from a quantum sieve

-The Max Planck Society

A sieve for molecules: The crystals of the metal-organic compound can be seen at a magnification of more than X6000 under the scanning electron microscope. © MPI for Intelligent Systems (Click to view larger version...)
A sieve for molecules: The crystals of the metal-organic compound can be seen at a magnification of more than X6000 under the scanning electron microscope. © MPI for Intelligent Systems
A metal-organic framework separates hydrogen isotopes more efficiently than previous methods

Deuterium is the heavy twin brother of hydrogen; however, it is more than 20 times rarer than identical twins. It accounts for only 0.015 percent of natural hydrogen and is twice as heavy as the light isotope.

There is no chemical difference between the two isotopes: both deuterium and ordinary hydrogen react with oxygen to form water. Its double mass allows researchers to lay a trail to elucidate chemical reactions or metabolic processes, however. They dispatch a compound containing deuterium into the processes and analyze in which conversion product it turns up. And this is only one of the tasks that deuterium fulfils in research. It may even become an inexhaustible and climate-neutral fuel in future.

This would be the case if nuclear fusion becomes so technically mature that energy is generated on Earth using the same process that also occurs in the Sun. This produces much less radioactive waste than nuclear fission.

In a cooperation established within the DFG German Research Foundation's priority program "Porous Metal-Organic Frameworks" (SPP 1362), a team of scientists from the Max Planck Institute for Intelligent Systems in Stuttgart, Jacobs University Bremen and the University of Augsburg have now been able to enrich deuterium contained in hydrogen more efficiently than with conventional methods.

The findings are reported in the journal Advanced Materials. The researchers discovered that a certain metal-organic framework, abbreviated MOF, absorbs deuterium more easily than common hydrogen at temperatures below minus 200 degrees Celsius.

Read more here. 


return to the latest published articles