Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • IAEA and ITER | Even closer cooperation

    Under Practical Arrangements signed in June, the International Atomic Energy Agency and the ITER Organization will be expanding and deepening a long history of [...]

    Read more

  • Neutral Beam Test Facility | High voltage component for MITICA

    Creating reliable high-energy neutral beams at ITER parameters, from a negative ion source, requires such a large technological leap that the components of the [...]

    Read more

  • 24th ITER Council | En route to First Plasma, 63% of the work is done

    The ITER Council has met for the twenty-fourth time since the signature of the ITER Agreement. Representatives from China, the European Union, India, Japan, Kor [...]

    Read more

  • Upper ports | A very international effort

    The 18 upper ports of the ITER vacuum vessel are procured by Russia, manufactured in Germany, and mounted (in part) on the vessel sectors by contractors in Ital [...]

    Read more

  • Paint job | One level done, five to go

    The job is done and the effect is spectacular. At the deepest basement level (B2) of the Tokamak Building, the floors, walls, and ceilings are now perfectly whi [...]

    Read more

Of Interest

See archived entries

Exploring plasma science advances

John Greenwald, Princeton Plasma Physics Laboratory

The latest advances in plasma physics were the focus of more than 1,000 scientists from around the world who gathered in Providence, RI (USA) from 29 October-2 November for the 54th Annual Meeting of the American Physical Society's Division of Plasma Physics (APS-DPP). Papers, posters and presentations ranged from fusion plasma discoveries applicable to ITER, to research on 3D magnetic fields and antimatter. In all, more than 1,800 papers were discussed during the week-long event.

Researchers from the US Department of Energy's Princeton Plasma Physics Laboratory (PPPL) reported on experiments and computer simulations related to tokamak confinement and a variety of other research interests. These included specialized areas such as laboratory and astrophysical plasmas, where PPPL physicist Hantao Ji was prominent as a topic chair and speaker at a tutorial session.

Evolution of the plasma in PPPL's National Spherical Torus Experiment during a disruption, as captured by a fast color camera. The plasma is centred in the left-hand frame, moves downward in the centre frame, and lands on the floor of the vacuum chamber in the right frame. Large ''halo currents'' are observed in the indicated ring of detectors at this time. (Click to view larger version...)
Evolution of the plasma in PPPL's National Spherical Torus Experiment during a disruption, as captured by a fast color camera. The plasma is centred in the left-hand frame, moves downward in the centre frame, and lands on the floor of the vacuum chamber in the right frame. Large ''halo currents'' are observed in the indicated ring of detectors at this time.
Members of the Laboratory's National Spherical Torus Experiment Upgrade (NSTX-U) team gave a tutorial and three invited talks. Physicist Dennis Mueller presented the tutorial on "Physics of Tokamak Plasma Start-up."

The Laboratory sent 135 physicists, science educators and graduate students to the meeting and saw some of its research highlighted in news releases on the APS-DPP website. Of the 14 papers highlighted in this manner, seven came from PPPL.

The meeting focused considerable attention on boundary physics and plasma-material wall interactions, an area of growing emphasis at PPPL. Dennis Whyte, a professor of nuclear science and engineering at the Massachusetts Institute of Technology, presented a major review of the subject to a plenary session.

Invited speakers on the topic of plasma-wall and impurity physics included PPPL scientists Filippo Scotti and Dick Majeski, principal investigator for the Laboratory's Lithium Tokamak Experiment (LTX). PPPL physicists Michael Jaworski and Igor Kaganovich participated in a session on plasma-wall interactions, with Jaworski serving as chair and Kaganovich giving the first invited talk in the session.

The importance of boundary physics has been recognized in innovations like the so-called snowflake divertor, which limits the heat on tokamaks' inner walls. The divertor, developed by researchers at PPPL and the DOE's Lawrence Livermore and Oak Ridge national laboratories, won an R&D 100 Award in June from R&D Magazine. The device "reduces both the power flux on plasma-facing components and the influx of impurities into the core plasma," said PPPL physicist Robert Kaita, the head of diagnostics and physics operations for the National Spherical Torus Experiment Upgrade (NSTX-U), and co-principal investigator for the LTX.

Considerable interest also was shown for inertial confinement fusion experiments at the National Ignition Facility (NIF) at the DOE's Lawrence Livermore National Laboratory. Speakers noted that producing fusion by heating a capsule producing energy with high-powered lasers was proving more difficult than expected. NIF scientists now seek to develop a more detailed understanding of the physics of this process in order to achieve ignition.

Follow this link to APS press releases.


return to the latest published articles