Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Neighbours | In goes the antenna

    Just a short distance from the ITER site, the Institute for Magnetic Fusion Research (IRFM) is modifying the Tore Supra plasma facility which, once transformed, [...]

    Read more

  • Remote handling | Off-site test facility for design evaluation

    Through a technical collaboration established between the ITER Organization and the UK Atomic Energy Authority (UKAEA) in 2017, the UKAEA's centre for Remote Ap [...]

    Read more

  • Poloidal field coils | A tailor-made ring

    They work like tailors, carefully taking measurements and cutting immaculate fabric with large pairs of scissors. But they're not making a white three-piece sui [...]

    Read more

  • Fusion world | Record results at KSTAR

    Experiments in the Korean tokamakKSTAR in 2017 achieved record-length periods of ELM suppression by the application of three-dimensional magnetic fields with in [...]

    Read more

  • JT-60 SA| Cryostat ready for Europe-Japan tokamak

    The cryostat vessel body of the JT-60SA tokamakhas been successfully manufactured and pre-assembled at a factory in Spain, and will soon be transferred to the J [...]

    Read more

Of Interest

See archived articles

A predator-prey relationship in the plasma jungle

Phil Dooley, EFDA

Data from the TJ-II stellarator showing oscillations in the turbulence, slightly ahead of oscillations in the flow. (Click to view larger version...)
Data from the TJ-II stellarator showing oscillations in the turbulence, slightly ahead of oscillations in the flow.
There is a predator on the loose in Madrid. It's been discovered in the fusion laboratories of CIEMAT, preying on its favourite victim ... Turbulence!

This predator is not a large feline, but a type of plasma behaviour known as zonal flows. Strangely enough the relationship between zonal flows and turbulence follows exactly the same pattern as that between the numbers of predators and their prey in the wild—a significant discovery for fusion scientists in the quest to control the turbulence that allows energy to escape from their experiments.

In the same way that a large number of prey—for example, deer—might support an increasing population of tigers, in certain conditions turbulence seems to trigger the growth of the zonal flow pattern.

However as they grow, the zonal flows inhibit the turbulence, which dies away, eventually undermining the zonal flows, in the same way as a large population of tigers would cause a decline in the deer population, leading to their own downfall. But as the tiger population drops, the deer begin to thrive again, and so the cycle begins anew. This oscillatory predator-prey relationship is exactly what has been measured in the TJ-II stellarator at CIEMAT, as shown in the figure.

The scientist who made the discovery is Dr Teresa Estrada, head of microwave and laser diagnostics at TJ-II. "It was a lucky discovery!" she said. "I was not looking for this, the timescale of the oscillations is milliseconds so I could easily have missed it. I saw [the oscillations] first in the turbulence, and so I looked at the flow and was excited to see them there too, with the characteristic ninety degree phase delay."

Read more on the EFDA website.


return to the latest published articles