Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • IAEA and ITER | Even closer cooperation

    Under Practical Arrangements signed in June, the International Atomic Energy Agency and the ITER Organization will be expanding and deepening a long history of [...]

    Read more

  • Neutral Beam Test Facility | High voltage component for MITICA

    Creating reliable high-energy neutral beams at ITER parameters, from a negative ion source, requires such a large technological leap that the components of the [...]

    Read more

  • 24th ITER Council | En route to First Plasma, 63% of the work is done

    The ITER Council has met for the twenty-fourth time since the signature of the ITER Agreement. Representatives from China, the European Union, India, Japan, Kor [...]

    Read more

  • Upper ports | A very international effort

    The 18 upper ports of the ITER vacuum vessel are procured by Russia, manufactured in Germany, and mounted (in part) on the vessel sectors by contractors in Ital [...]

    Read more

  • Paint job | One level done, five to go

    The job is done and the effect is spectacular. At the deepest basement level (B2) of the Tokamak Building, the floors, walls, and ceilings are now perfectly whi [...]

    Read more

Of Interest

See archived entries

A predator-prey relationship in the plasma jungle

Phil Dooley, EFDA

Data from the TJ-II stellarator showing oscillations in the turbulence, slightly ahead of oscillations in the flow. (Click to view larger version...)
Data from the TJ-II stellarator showing oscillations in the turbulence, slightly ahead of oscillations in the flow.
There is a predator on the loose in Madrid. It's been discovered in the fusion laboratories of CIEMAT, preying on its favourite victim ... Turbulence!

This predator is not a large feline, but a type of plasma behaviour known as zonal flows. Strangely enough the relationship between zonal flows and turbulence follows exactly the same pattern as that between the numbers of predators and their prey in the wild—a significant discovery for fusion scientists in the quest to control the turbulence that allows energy to escape from their experiments.

In the same way that a large number of prey—for example, deer—might support an increasing population of tigers, in certain conditions turbulence seems to trigger the growth of the zonal flow pattern.

However as they grow, the zonal flows inhibit the turbulence, which dies away, eventually undermining the zonal flows, in the same way as a large population of tigers would cause a decline in the deer population, leading to their own downfall. But as the tiger population drops, the deer begin to thrive again, and so the cycle begins anew. This oscillatory predator-prey relationship is exactly what has been measured in the TJ-II stellarator at CIEMAT, as shown in the figure.

The scientist who made the discovery is Dr Teresa Estrada, head of microwave and laser diagnostics at TJ-II. "It was a lucky discovery!" she said. "I was not looking for this, the timescale of the oscillations is milliseconds so I could easily have missed it. I saw [the oscillations] first in the turbulence, and so I looked at the flow and was excited to see them there too, with the characteristic ninety degree phase delay."

Read more on the EFDA website.


return to the latest published articles