Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Rendezvous | D and T to meet at JET in 2020

    In 2020, for the first time in more than 20 years, a reaction that only occurs in the core of the stars will be produced on Earth in a man-made machine. In the [...]

    Read more

  • On site | MOMENTUM believes in recent graduates

    It is rare for students to leave university and immediately begin work on a globally significant project. But thanks to the graduate program run by the project' [...]

    Read more

  • Tokamak Pit | Big steel elbow in place

    A cryostat feedthrough delivered by the Chinese Domestic Agency has become the first metal component of the machine to be installed in the Tokamak Pit, in an op [...]

    Read more

  • Neutral beam source | Europe awards EUR 20 million contract

    The contract, awarded to ALSYOM-SEIV (ALCEN group, France), launches the manufacturing phase for the beam source that will come on line in 2022 as part of the f [...]

    Read more

  • Image of the week | US Under Secretary of Science tours site

    Five months, almost to the day, after the US Secretary of Energy Rick Perry visited ITER, his deputy, Under Secretary for Science Paul Dabbar, stood by the same [...]

    Read more

Of Interest

See archived entries

Bringing fusion electricity to the grid

EFDA

So far, fusion scientists have succeeded in generating fusion power, but the required energy input was greater than the output. ITER will be the first device to produce a net surplus of fusion power, namely 500 megawatts from a 50 megawatt input. (Click to view larger version...)
So far, fusion scientists have succeeded in generating fusion power, but the required energy input was greater than the output. ITER will be the first device to produce a net surplus of fusion power, namely 500 megawatts from a 50 megawatt input.
The European Fusion Development Agreement (EFDA) has published a roadmap which outlines how to supply fusion electricity to the grid by 2050. The roadmap to the realization of fusion energy breaks the quest for fusion energy down into eight missions. For each mission, it reviews the current status of research, identifies open issues, proposes a research and development program and estimates the required resources. It points out the needs to intensify industrial involvement and to seek all opportunities for collaboration outside Europe.

The goal of fusion research is to make the energy of the stars available on Earth by fusing hydrogen nuclei. Fusion energy is nearly unlimited as it draws on the abundant raw materials deuterium and lithium. It does not produce greenhouse gases or long-lived radioactive waste. It is intrinsically safe, as chain reactions are impossible.

So far, fusion scientists have succeeded in generating fusion power, but the required energy input was greater than the output. The international experiment ITER, which starts operating in 2020, will be the first device to produce a net surplus of fusion power, namely 500 megawatts from a 50 megawatt input.

''Europe can keep pace only if it focuses its effort and pursues a pragmatic approach to fusion energy,'' states Dr Francesco Romanelli, EFDA Leader. (Click to view larger version...)
''Europe can keep pace only if it focuses its effort and pursues a pragmatic approach to fusion energy,'' states Dr Francesco Romanelli, EFDA Leader.
Europe holds a leading position in fusion research and hosts ITER. The fact that the ITER Project is funded and run by six other nations besides Europe reflects the growing expectations on fusion energy. China, for instance, is launching an aggressive program aimed at fusion electricity well before 2050. "Europe can keep pace only if it focuses its effort and pursues a pragmatic approach to fusion energy" states Francesco Romanelli, EFDA Leader.

Focusing on the research and engineering activities needed to achieve fusion electricity, the roadmap shows that these can be carried out within a reasonable budget. The amount of resources proposed are of the same level as those originally recommended for the seventh European Research Framework Programme — outside the European investment in the ITER construction.

The roadmap covers three periods: The upcoming European Research Framework Programme, Horizon 2020, the years 2021-2030 and the time between 2031 and 2050.

ITER is the key facility of the roadmap as it is expected to achieve most of the important milestones on the path to fusion power. Thus, the vast majority of resources proposed for Horizon 2020 are dedicated to ITER and its accompanying experiments. The second period is focused on maximizing ITER exploitation and on preparing the construction of a demonstration power plant DEMO, which will for the first time supply fusion electricity to the grid. Building and operating DEMO is the subject of the last roadmap phase.

In the course of the roadmap implementation, the fusion program will move from being laboratory-based and science-driven towards an industry- and technology-driven venture. ITER construction already generates a turnover of about EUR 6 billion. The design, construction and operation of DEMO requires full involvement of industry to ensure that, after a successful DEMO operation, industry can take responsibility for commercial fusion power.

The roadmap document can be dowloaded here.


return to the latest published articles