Enable Recite

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Art and ITER | Two sisters, two suns and a monument to fusion

    Amid the gentle slopes of Asciano, Italy, there stands a stone window that frames the Sun on the summer solstice. It looks as though it might have always been t [...]

    Read more

  • Staff | The men and women of ITER

    They hail from Ahmedabad and Prague ... from Naka and Moscow ... from Seoul, Hefei, Atlanta and hundreds of other towns and cities across the 35 nations partici [...]

    Read more

  • ITER Talks | All about ITER and fusion

    Beginning this autumn, the ITER Organization will be launching a new video series to inform, inspire and educate. The first video—introducing the series and off [...]

    Read more

  • Image of the week | A majestic components enters the stage

    The floor of the Assembly Hall is an ever-changing stage. Like characters in a grand production, components of all size and shapes make a spectacular entry, pl [...]

    Read more

  • Magnet system | A set of spares for the long journey

    In about five years, ITER will embark on a long journey through largely uncharted territory. Conditions will be harsh and—despite all the calculations, modellin [...]

    Read more

Of Interest

See archived entries

Bringing fusion electricity to the grid

So far, fusion scientists have succeeded in generating fusion power, but the required energy input was greater than the output. ITER will be the first device to produce a net surplus of fusion power, namely 500 megawatts from a 50 megawatt input. (Click to view larger version...)
So far, fusion scientists have succeeded in generating fusion power, but the required energy input was greater than the output. ITER will be the first device to produce a net surplus of fusion power, namely 500 megawatts from a 50 megawatt input.
The European Fusion Development Agreement (EFDA) has published a roadmap which outlines how to supply fusion electricity to the grid by 2050. The roadmap to the realization of fusion energy breaks the quest for fusion energy down into eight missions. For each mission, it reviews the current status of research, identifies open issues, proposes a research and development program and estimates the required resources. It points out the needs to intensify industrial involvement and to seek all opportunities for collaboration outside Europe.

The goal of fusion research is to make the energy of the stars available on Earth by fusing hydrogen nuclei. Fusion energy is nearly unlimited as it draws on the abundant raw materials deuterium and lithium. It does not produce greenhouse gases or long-lived radioactive waste. It is intrinsically safe, as chain reactions are impossible.

So far, fusion scientists have succeeded in generating fusion power, but the required energy input was greater than the output. The international experiment ITER, which starts operating in 2020, will be the first device to produce a net surplus of fusion power, namely 500 megawatts from a 50 megawatt input.

''Europe can keep pace only if it focuses its effort and pursues a pragmatic approach to fusion energy,'' states Dr Francesco Romanelli, EFDA Leader. (Click to view larger version...)
''Europe can keep pace only if it focuses its effort and pursues a pragmatic approach to fusion energy,'' states Dr Francesco Romanelli, EFDA Leader.
Europe holds a leading position in fusion research and hosts ITER. The fact that the ITER Project is funded and run by six other nations besides Europe reflects the growing expectations on fusion energy. China, for instance, is launching an aggressive program aimed at fusion electricity well before 2050. "Europe can keep pace only if it focuses its effort and pursues a pragmatic approach to fusion energy" states Francesco Romanelli, EFDA Leader.

Focusing on the research and engineering activities needed to achieve fusion electricity, the roadmap shows that these can be carried out within a reasonable budget. The amount of resources proposed are of the same level as those originally recommended for the seventh European Research Framework Programme — outside the European investment in the ITER construction.

The roadmap covers three periods: The upcoming European Research Framework Programme, Horizon 2020, the years 2021-2030 and the time between 2031 and 2050.

ITER is the key facility of the roadmap as it is expected to achieve most of the important milestones on the path to fusion power. Thus, the vast majority of resources proposed for Horizon 2020 are dedicated to ITER and its accompanying experiments. The second period is focused on maximizing ITER exploitation and on preparing the construction of a demonstration power plant DEMO, which will for the first time supply fusion electricity to the grid. Building and operating DEMO is the subject of the last roadmap phase.

In the course of the roadmap implementation, the fusion program will move from being laboratory-based and science-driven towards an industry- and technology-driven venture. ITER construction already generates a turnover of about EUR 6 billion. The design, construction and operation of DEMO requires full involvement of industry to ensure that, after a successful DEMO operation, industry can take responsibility for commercial fusion power.

The roadmap document can be downloaded here.


return to the latest published articles