Subscribe options

Select your newsletters:

Please enter your email address:


News & Media

Latest ITER Newsline

  • The crown's jewels

    They are the jewels of the concrete crown that will support the combined mass of the Tokamak and its surrounding cryostat: 18 perfectly polished, chrome-plated [...]

    Read more

  • "Making the best of fusion installations in Europe"

    With the recent addition of the Ukraine's Kharkov Institute for Physics and Technology (KIPT), the EUROfusion consortium now encompasses 30 European fusion labo [...]

    Read more

  • New cryostat manufacturing milestone

    They all gathered—members of the ITER-India team and contractor Larsen & Toubro—to mark a portentous moment: the start of manufacturing on the upper cylinde [...]

    Read more

  • Key power supply elements pass tests in Russia

    Since the signature of a Procurement Arrangement in 2011 with Russia for switching networks, fast discharge units, DC busbars and instrumentation—all key elemen [...]

    Read more

  • First vessel subassembly achieved in Europe

    Nine massive steel sectors deliveredby the Domestic Agencies of Europe (five sectors) and Korea (four sectors) will be welded together on site during the assemb [...]

    Read more

Of Interest

See archived articles

Lawson's magic formula

-Phil Dooley, EFDA

In 1955, John D.Lawson (4 April 1923-15 January 2008) demonstrated that the conditions for fusion reactions relied on three vital quantities: temperature (T), density (n) and confinement time (τ). (Click to view larger version...)
In 1955, John D.Lawson (4 April 1923-15 January 2008) demonstrated that the conditions for fusion reactions relied on three vital quantities: temperature (T), density (n) and confinement time (τ).
In 1955 a young engineer working on nuclear fusion decided to work out exactly how enormous the task of achieving fusion is. Although his colleagues were optimistic about their prospects, he wanted to prove it to himself. His name was John Lawson, and his findings—that the conditions for fusion power relied on three vital quantities—became the landmark Lawson Criteria.

The genesis of Lawson's Criteria is simple enough—he calculated the requirements for more energy to be created than is put in, and came up with a dependence on three quantities: temperature (T), density (n) and confinement time (τ)*. With only small evolution thanks to some subtle changes of definition, this is basically the same figure of merit used by today's fusion scientists, the triple product, nτT.

The amount of energy created relies on particles colliding and fusing—the number of collisions is related to the number of particles in a certain region—thus n, the number density (not mass density) is Lawson's first criterion. This would seem encouraging for the prospective experiment, as creating high pressure is relatively easy. However there is a catch. At higher densities a process known as bremsstrahlung rears its ugly head, in which collisions between nuclei and electrons generate radiation. Bremsstrahlung can become so dominant that all the power in the plasma is radiated away; the optimum density conditions are surprisingly low, around a million times less dense than air.

Nonetheless the fusion collisions—between the nuclei—have to be at high speed. This allows the nuclei to overcome their electrostatic repulsion, and get close enough for the strong force that governs fusion to take over and stick the particles together. The speed of a gas or plasma particle is equivalent to its temperature: the second of Lawson's criteria.

Again there is a limit—if the two particles are moving really fast then the time they are in close enough proximity for fusion to occur decreases. The bremsstrahlung also increases at higher temperatures, due to faster moving electrons. The Goldilocks temperature turns out to be in the vicinity of 100—200 million degrees, a seemingly huge task in the fifties that has become a standard condition today.

* "τ" is the Greek letter tau (pronounced like "how").

Read more on the EFDA website.

return to the latest published articles